grbl1.1+Arduino CNCシールドV3.5+bCNCを使用中。
BluetoothモジュールおよびbCNCのPendant機能でスマホからもワイヤレス操作可能。
その他、電子工作・プログラミング、機械学習などもやっています。
MacとUbuntuを使用。

CNCマシン全般について:
国内レーザー加工機と中国製レーザー加工機の比較
中国製レーザーダイオードについて
CNCミリングマシンとCNCルーターマシンいろいろ
その他:
利用例や付加機能など:
CNCルーター関係:



*CNCマシンの制作記録は2016/04/10〜の投稿に書いてあります。


ラベル ハイパーパラメータ の投稿を表示しています。 すべての投稿を表示
ラベル ハイパーパラメータ の投稿を表示しています。 すべての投稿を表示

2018年11月20日火曜日

Kaggle Digital Recognizer(MNIST): Keras, fit_generator() + hyperopt

Kaggle Digital Recognizer(MNIST)の続きです。前回から少しだけ内容を変えてみたらベストスコアがでました。
改良点は以下です。

fit_generator():
前回は、通常の訓練model.fit()を使った後にData Augmentationとしてmodel.fit_generator()を追加して二段階で訓練しましたが、今回は最初からfit_generator()だけで訓練してみることにしました。

BatchNormalization:
CNNに関しては前回よりも層を少なくして、conv2dの後に必ずBatchNormalization()を入れ、プーリング層(学習なし)を使わずにstrides=2のconv2d()(学習あり)で1/2にダウンサンプリングすることにしました。

Hyperopt:
Hyperoptに関しては前回同様Dropout率だけを最適化しています(合計3箇所)。探索回数はとりあえず10回。

スコア:
結果はこれまでのベストスコアである0.99771(Top 5%)まで向上しました。
この辺りまで来るとスコアを0.001上げるのはかなり至難の技で、正直0.997以上になるとは期待していませんでした。しかし予想以上に満足できる結果が得られたので、Digital Decognizer(MNIST)に関してはひと段落ついたという感じです。

ただし、調べれば調べるほど興味深い項目が登場してきて、今後試してみたいのは:
・他のMNISTデータセットで今回のモデルの精度を確かめてみる(KaggleのMNISTデータセットにオーバーフィッティングしていないかどうかの検証)。
・今回はHyperoptによってDropout率を自動的に決定させましたが、Dropoutを一般化したDropconnectというのもあるらしく、それを使うとどうなるか(Keras Dropconnect Implementation)?

Kaggleで勝つデータ分析の技術
門脇 大輔 阪田 隆司 保坂 桂佑 平松 雄司
技術評論社
売り上げランキング: 363


追記:
その後、既存のkeras.datasets.mnistのデータセット(60000+10000)で検証してみると0.997以上の正解率となりました。おそらくKaggleのMNISTデータも多数含まれているので似たような結果となったのだと思います(しかし偶然KaggleのMNISTデータだけにオーバーフィットしすぎているというわけでもなさそう)。

2018年11月14日水曜日

GPyOpt: Digital Recognizer(MNIST) CNN Keras ハイパーパラメータ最適化

引き続きハイパーパラメータ最適化として、今回はGPyOptを使ってみました。これまでHyperasHyperoptを試して見ましたが、ベイズ最適化でも採用しているアルゴリズムが微妙に違うようなので試してみたという感じです。
個人的にはHyperoptが一番使いやすく感じましたが、GPyOptは以前scikit-learnで試したベイス最適化に近いアルゴリズムだったのでもう少し理解を深めてみようかと。
まだ手探り段階なので、使い方に関しては後から追記するかもしれません。


使い方:

ハイパーパラメータの設定:
まずはMNISTモデルにおけるハイパーパラメータの設定からです。今回はやや少なめで。

最適化するハイパーパラメータ:
・各層のドロップアウト率:連続値
・Dense層出力ユニット数:離散値
・validation_splitの比率:連続値

GPyOptではハイパーパラメータを以下のようなフォーマットで書きます。
params = [
    {'name': 'Dropout_0',        'type': 'continuous',  'domain': (0.0, 0.5)},
    {'name': 'Dropout_1',        'type': 'continuous',  'domain': (0.0, 0.5)},
    {'name': 'Dropout_2',        'type': 'continuous',  'domain': (0.0, 0.5)},
    {'name': 'Dropout_3',        'type': 'continuous',  'domain': (0.0, 0.5)},
    {'name': 'Dense_0',          'type': 'discrete',    'domain': (128, 256, 512)},
    {'name': 'Dense_1',          'type': 'discrete',    'domain': (64,128, 256)},
    {'name': 'validation_split', 'type': 'continuous',  'domain': (0.1, 0.3)}
]

リスト化されたディクショナリーで(ここを参考に)、

・'name' : パラメータ名
・'type' : 'continuout'(連続値)、'discrete'(離散値)、'categorical'(分類値)
・'domain' : 適用範囲または選択肢を()で括る

となるようです。


CNNモデルの構築:
次にモデルを構築します。前回同様MNIST分類用のCNNを使います。このモデルからはベイズ最適化するための評価値となるlossかaccが求められればいいのですが、

・loss
・acc
・model
・history

の4種類を戻り値にしておきました。
model.fit()させてEarlyStoppingで打ち切りになった最後のval_lossとval_accの値を参照しています。
    loss = hist.history['val_loss'][-1]
    acc = hist.history['val_acc'][-1]
modelやhistoryは不要ですが、後から参照するかもしれないので一応入れておきました(使うかどうかは分からない)。
return loss, acc, model, hist

上記パイパーパラメータに対応する変数部分には、x[:, 0]などと引数にインデックス番号をつけるようですが、どれが何番目かはわかりにくいのでハイパーパラメータの'name'から参照できる関数をつくってみました。
model.add(Dropout(Param('Dropout_0'), seed=seed))
このように書き込めばx[:, 0]へ自動変換してくれます。Hyperoptなどでもディクショナリーのキーを使っていたので、このほうが個人的には使いやすいかと(リスト内容を変えた場合にインデックス番号だと、他の番号も変わってしまうのが面倒なので)。
注意点として、最初に書いたハイパーパラメータはリストであるのに対して、この変数は2次元のndarrayに変換されてから代入されるようです。この変換関数は以下(cnn_model関数内)。
    def Param(p_name):
        p_index = [p['name'] for p in params].index(p_name)
        p_type = params[p_index]['type']
        
        if type(x) is np.ndarray:
            if p_type == 'continuous':
                return float(x[:, p_index])
            else:
                return int(x[:, p_index])
        else: # list
            if p_type == 'continuous':
                return float(params[p_index]['domain'])
            else:
                return int(params[p_index]['domain'])
後で最適化されたハイパーパラメータリストを直接渡せるようにしてあります。引数がndarrayならx[:,0]のような2次元ndarray、listならlist内のスカラー値へ変換後代入。また今回の場合、離散値はすべて整数だったのでintかfloatかも振り分けています。


フィッティング関数:
上記CNNモデルを以後のベイズ最適化関数GPyOpt.methods.BayesianOptimization()に直接渡してもいいのですが、CNNモデルからは4種類の値を出力することにしたので、このf(x)関数を間にはさんで必要な評価値だけを渡せるようにしました。今回はaccを評価値として渡すことにし、最小化するためにマイナス反転して-accにしています。
前述のように引数のxは二次元のnumpy.ndarrayになるようです。今回は7種類のハイパーパラメータがあるので、x.shapeは(1,7)になります。最初に設定したハイパーパラメータはリストでありndarrayではないので、この辺をいじる場合は変換するなどの工夫が必要です(このサンプルを参照)。
実際は、
def f(x):
    x = np.atleast_2d(x)
    fs = np.zeros((x.shape[0],1))
    for i in range(x.shape[0]):
        loss, acc, model, hist = cnn_model(x)
        fs[i] += np.log(acc)*(-1)
    return fs
このように書いたほうがいいのかもしれませんが、戻り値は1次元のndarrayだったので、今回は省略して以下のようにしました。対数変換したほうがいいのかもしれませんが効果の違いは検証していません。
def f(x):
    loss, acc, model, hist = cnn_model(x)
    return -acc

ベイズ最適化関数:
GPyOpt.methods.BayesianOptimization()に先程のf(x)関数とハイパーパラメータリストparamsを渡し、その他初期探索値や獲得関数などを決めます。獲得関数はデフォルトではEIになっていますが'EI_MCMC'を選んでみました。'EI_MCMC'を選択する場合は、model_typeで'GP_MCMC'を選んでおかなければいけないようです。
initial_design_numdataは20に設定しましたが、これはどのくらいがいいのかは不明(デフォルト:5)。探索する前のランダムな開始点の数なのかもしれませんが、今回の7次元に対してどのくらいが適当なのか?探索点は徐々に追加されながらフィッティングしていくと思うのでデフォルトの5でもいいのかもしれません。入れた回数だけループするようです(20回で約1時間)。
こまかな設定がいくつかありますが、まだ使いながら試している段階です。

次に、run_optimization(max_iter=50)で最適化が始まります。イテレーションを50回に設定しました。7種類のハイパーパラメータに対してどのくらいが適当なのかはまだ不明(ハイパーハイパーパラメータ)。50回で約4時間かかりました。
ループが終了すれば最適なハイパーパラメータが見つかったことになります。設定した回数より早く終わることもあります。


最適化されたハイパーパラメータの取得:
以下で結果を取得することができます。
x_best = opt.x_opt
print([i for i in x_best])

y_best = opt.fx_opt
print(y_best)
そうすると、
[0.1732254530746627, 0.39555160207057505, 0.14877909656106353, 0.07323704794308367, 128.0, 128.0, 0.1471216716379693]
-0.9945388349514563
と値が出てきて、最初のリストが最適化された各ハイパーパラメータ。
下の値はそのときのロス値。今回はaccをマイナス反転してあるのでaccの値と同じ。精度0.994以上でているのでまあまあの結果です。


最適化されたハイパーパラメータをモデルに適用:
上記結果と同時にベストモデルやベストウェイトを直接取り出したいのですが、そのような方法がGPyOptにはないようなので、最適化されたハイパーパラメータをCNNモデルに入れ直して再度訓練させてみました。
一応、上記ハイパーパラメータリストを元々のディクショナリー型のリストへ移し替えてからCNNモデルに渡しています。CNNモデルの引数がlistの場合はスカラー値を各変数に代入するような関数にしています。
CNNモデルはEarlyStopping機能をつけているので15ループで収束してくれました(4分25秒)。
このモデルを利用して提出用データを予測します。


まとめと結果(スコア):
最終的にスコアは0.99457でした。まあまあいい結果です(それでも手動調整のベストスコアである0.99528には達していない)。約6時間でこの結果ですが、もっと回せば向上するかはわからないです。これ以上のスコアを出すには、data augmentationでデータを水増しするなど必要かもしれません。
GpyOptはHyperoptに比べるとやや使いにくいという印象でした(サンプルも少ない)。しかしやりたいことに応じて使いやすく改造すればいいのかもしれません。もともとのアルゴリズム自体は優れていると思うので、いくつかを同時に試して結果的にいい方を選ぶ感じでしょうか。時間的にもHyperoptのほうが速いかもしれませんが、どのライブラリであっても数時間はかかるので時間よりも精度がでるほうがいいと思います(仕事で使っているわけではないので)。
このほか気になるライブラリとして、SkoptKoptPyBOSpearMintなどありますが、とりあえずはもう十分かと。

これまでは機械学習理論やアルゴリズムの種類を覚えていくことが面白かったのですが、Kaggleをきっかけにスコア(精度)を少しでもあげようとすることにも興味を持てたのはよかったです。実際使ってみて、その結果から次にどうすればいいのかという具体的な疑問が次のモチベーションになるので、より理解も深まりつつ面白くなっていく感じです。

追記:
その後、4つのDropout率だけをハイパーパラメータとして最適化した結果スコア:0.99557まで向上(これまでのベストスコアは0.99524)。
その他のハイパーパラメータは以下のように固定。
validation data:test_size=0.15
Dense_0 output units: 256
Dense_1 output units: 128
batch_size=32

そして最適化においては以下の探索回数に設定。
initial_design_numdata=30(2h 29mins)
max_iter=100(stop at 52: 7h 47mins)
max_iterは最大100回に設定しましたが途中52回で収束し停止しました。
合計で10時間30分(GTX1060で)。

関連:
Kaggle Digital Recognizer(MNIST): Hyperopt + Data Augmentation
Kaggle Digital Decognizer(MNIST): Keras, fit_generator() + hyperopt



機械学習スタートアップシリーズ ベイズ推論による機械学習入門 (KS情報科学専門書)
Posted with Amakuri at 2018.12.21
須山 敦志
講談社
販売価格 ¥3,024(2018年12月21日20時40分時点の価格)

2018年11月10日土曜日

Hyperopt:Digital Recognizer(MNIST)のハイパーパラメータの最適化



今回は、HyperoptでMNISTのハイパーパラメータの最適化を行いました。Hyperoptは前回試したHyperasの元となっているライブラリです。Hyperasはシンプルに使える反面やや扱いにくい部分(慣れていないだけかもしれませんが)もあったため、大元のHyperoptで書き直してみました。

データは前回同様KaggleのDigital Recognizer(MNIST)で、最適化するハイパーパラメータは以下です。

・Dropout率
・Dense層出力ユニット数
・batch_size数
・validation_splitの比率

Hyperoptの使い方:

ハイパーパラメータのディクショナリー設定:
まずハイパーパラメータのディクショナリーを以下のようなフォーマットで用意します。

params = {
    'Dense_0':          hp.choice('Dense_0', [128, 256, 512]),
    'Dense_1':          hp.choice('Dense_1', [64, 128, 256]),
    'Dropout_0':        hp.uniform('Dropout_0', 0.0, 1.0),
    'Dropout_1':        hp.uniform('Dropout_1', 0.0, 1.0),
    'Dropout_2':        hp.uniform('Dropout_2', 0.0, 1.0),
    'Dropout_3':        hp.uniform('Dropout_3', 0.0, 1.0),
    'batch_size':       hp.choice('batch_size', [16, 32, 64]),
    'validation_split': hp.uniform('validation_split', 0.1, 0.3)
}

離散値の場合はhp.choice()、連続値の場合はhp.uniform()を使います。このあたりはHyperasと同じような感じです。このほか乱数用のhp.randint()や正規分布用のhp.normal()などいくつかあります(ここに書いてあります)。


ハイパーパラメータの挿入と戻り値の設定:
次はモデルの構築です。MNISTデータの前処理をしておいてから、CNNを用いてMNIST分類モデルを構築します。そして最適化したい変数の部分(以下の場合:CNN層内のドロップアウト率)に、

model.add(Dropout(params['Dropout_0'], seed=seed))

という感じで挿入しておきます。
model.compile()、model.fit()したあと model.evaluate()でlossとaccを求めて、その値を戻り値とします。サンプルなどではlossのかわりにaccを評価値として次のfmin()関数に渡していますが、どちらがいいのかは不明。または、hist=fit()のhistoryからhist.history['val_loss'][-1]で最後のロス値を取得する方法でもいいのかもしれません(あるいは'val_acc')。尚、accを渡す場合はマイナスをかけて最大値を最小値に反転させておく必要があります。
またモデルなどその他の値やオブジェクトを渡すときはディクショナリーにするといいようです。ディクショナリーにする場合は、次のfmin()関数に値を渡すために'loss'と'status'のキーが最低含まれていないといけないようです。今回は追加でモデルも含めたので以下のような戻り値としました。あとでベストmodelを参照する場合は追加しておくといいと思います。

return {'loss': -acc, 'status': STATUS_OK, 'model': model}


最適化:
最後に、best=fmin()で最適なパラメータを見つけます。fmin()へモデルとハイパーパラメータディクショナリーを渡し、探索回数などを指定して最適化します。探索回数は多いほどいいと思いますが、それなりに時間はかかります(数時間とか)。
trialsには探索結果の記録が保持されるので後で参照します。

trials = Trials()
best = fmin(fn=cnn_model, 
            space=params, 
            algo=tpe.suggest, 
            max_evals=20, 
            trials=trials,
            verbose=1,
            rstate=np.random.RandomState(seed))

fn:CNNモデル(前述の'loss', 'status', 'model'が戻り値)
space:パイパーパラメータのディクショナリー
algo:使用するアルゴリズム(TPEなのでこのまま)
max_evals:探索回数
trials:探索記録保持先
verbose:ログ出力
rstate:乱数固定


結果参照:
best=fmin()からは最適化されたパラメータのディクショナリーが出力されます。そのままだと、hp.choice()の場合リストのインデックス番号が返されるので、

space_eval(params, best)

で実際の値に変換出力してくれます(以下)。

{'Dense_0': 512,
 'Dense_1': 256,
 'Dropout_0': 0.19796353174591008,
 'Dropout_1': 0.30328292011950164,
 'Dropout_2': 0.7005074297830172,
 'Dropout_3': 0.3974900176858912,
 'batch_size': 64,
 'validation_split': 0.16617354953831512}

あらかじめtrials=Trials()と定義しておけば、trialsの中に全ての情報が記録されるので、必要に応じて値やモデルを参照することができます。

trials.best_trial['result']

で以下が出力されます(複数回探索した中でのベストの結果)。lossはaccをマイナス反転したものなのでaccのこと、modelはそのときのベストモデル、statusは処理が無事完了なら'ok'。

{'loss': -0.9935714285714285,
 'model': <keras.engine.sequential.Sequential at 0x7fc5c3da87f0>,
 'status': 'ok'}

ベストモデルは、

best_model = trials.best_trial['result']['model']

によって参照することができるので、このモデルを使ってpredict()することができます。

まとめ:
前回のHyperasよりも使い勝手はよさそうです。それほど面倒なコーディングをすることもないので、個人的にはHyperoptのほうが便利かと。要は、パイパーパラメータディクショナリーとモデルを最適化関数に入れれば答えがでてくるということです。
詳しいドキュメントがないので(ここくらい)、細かな使い方はわからないのですが(ソースを読み解くしかないかも)、いろいろ応用できそうです。
今回はmax_evals=20で20回探索(NVIDIA GTX1060で49分)した結果、スコアは0.99257でした。まあまあの結果でしたが、実際100回以上(数時間)は回したほうがいいのかもしれません。

こちらのサイトでは様々なベイズ最適化ライブラリーを比較しており、時間的にはHyperoptが一番速いようです。10次元以下の最適化であればPyBOが優れているようで、それ以上の次元ではどれも遅くなるようです。また20次元や40次元になるとほとんどのライブラリが最適化できなくなるようで、Spearmintが20次元でも機能していたようです。

追記1:
その後100回(約6時間)回してみましたがスコアは0.99185という結果。validationセットでのスコアは0.995だったので向上しましたが、オーバーフィッティング気味だったったのか結果的にはいまいち。いずれにせよ0.992前後が限界という感じ。CNNの層を少し改造するか、kerasのImageDataGeneratorでデータ水増しした方がいいのかもしれません。

追記2:
validation_splitを0.2に固定して、Dropout率とDense層出力ユニット数だけをハイパーパラメータとして10回ほど探索すると0.99442まで向上しました。普通に考えてvalidation dataは少ないほどval_accは上がってしまうと思うので固定にしたほうがよさそうです。

関連:
GPyOpt: Digital Recognizer(MNIST) CNN Keras ハイパーパラメータ最適化
Kaggle Digital Recognizer(MNIST): Hyperopt + Data Augmentation
Kaggle Digital Decognizer(MNIST): Keras, fit_generator() + hyperopt


2018年11月9日金曜日

HyperasでDigital Recognizer(MNIST)を試す


前回AutokerasでMNISTを自動化分類してみましたが、今回は特定のハイパーパラメータを最適化するHyperasHyperoptのkerasラッパー)を試してみました。最適化にはいろいろ種類があって、HyperasはTree-structured Parzen Estimators (TPE)というガウス過程の欠点を補った方法のようです。グリッドサーチよりも計算量が少なく、ベイズ最適化のように探索していくようですが、微妙に計算方法が異なるようです。


使い方:
Hyperasの使い方は非常に簡単で、
例えばドロップアウト率を0から1の範囲で最適化したい場合は、

Dropout({{uniform(0, 1)}})

複数の選択肢がある場合は、

optimizer={{choice(['adam', 'rmsprop', 'SGD'])}}

を通常の変数部分に入れて行くだけです。ディクショナリーを用意する必要もないので楽です。

ちなみに、今回最適化したハイパーパラメータは以下。
・Dropout率
・Dense層出力ユニット数
・batch_size数
・validation_splitの比率


ルール:
ただし少しだけルールがあるようです(このあたりがやや使いにくいかも)。
HyperasはHyperoptのラッパーで、一旦コーディングした内容をそのままHyperoptへ翻訳変換してしまうようです。そのためまずdata関数とmodel関数を作り(カプセル化するフォーマット)、その後dataとmodelをoptim.minimize()へ渡してモデル探索します。基本的には以下のようなフォーマット。

def data():
  データの読み込み
  データの前処理
  return X_train, Y_train, X_test, Y_test

def model(X_train, Y_train, X_test, Y_test):
  model = Sequential()
  ...
  model.compile()
  model.fit()
  ...
  return{'loss':-acc, 'status': STATUS_OK, 'model': model}

best_run, best_model = optim.minimize(model, data, ...)


それから、data関数とmodel関数外で定義したグローバル変数はdata関数とmodel関数のスコープに届かないようです(importしたモジュールなどは問題ない)。よってグローバル変数などは、新たにdata関数とmodel関数内に定義しないといけなさそうです。globalを使えばいいのかも。
それと引数や戻り値の変数名も一致させておかないとエラーがでました。
また、model関数内で{{uniform()}}や{{choice()}}を含んだ行を#でコメントアウトしても、Hyperoptへ変換される際には最適化する変数として読み込まれてしまうので消去する必要があります。

最初なぜエラーがでるのかわかりませんでしたが、Hyperoptへそのまま翻訳変換するためそういうルールのようです。そういうことから、やや複雑なことをするならHyperoptを使ったほうがいいかもしれません。

ということで、このルールに戸惑いましたが何とかコーディングしたものが以下。

最適化されたハイパーパラメータはbest_runによって出力されます。

{'Dense': 64,
 'Dense_1': 64,
 'Dropout': 0.21099660541107612,
 'Dropout_1': 0.29327102196615873,
 'Dropout_2': 0.7302305870589935,
 'Dropout_3': 0.258985915829989,
 'batch_size': 32,
 'validation_split': 0.10388179991112252}

今回のハイパーパラメータはこんな感じ。
デフォルトだとchoice型のハイパーパラメータはリストのindex番号として出力されるので(例えば上記の'Dense': 64がデフォルトだと'Dense': 0と表示される)、optim.minimize()内に

eval_space=True

を加えておけば、リスト内の実際の値として出力されます。
また今回は、max_evals=10としました。これは探索回数のことだと思うのですが、最低どのくらいが必要かは試してみないとわかりません(ハイパーパラメータのハイパーパラメータ)。探索回数が多いほど正確に予測できると思いますが、その分時間もかかってしまいます。以前ベイズ最適化を試した時は15回くらいの探索でブラックボックス関数にほぼ近似していましたが、Hyperas(Hyperopt)のTPEアルゴリズムにおいてはどうなのか?



まとめ:
まだ使い方に慣れていないためか、スコアは0.98371(max_evals=10)でいまいちでした。何回かやり直してみたので、それなりに時間がかかってしまいました(エラーや失敗も含めて)。そうなると、まだまだ手動調節(スコア:099528)のほうがMNISTの場合であれば早いという感じです。
ただ、手っ取り早く試すにはHyperasはいいのかもしれません。少し使い勝手が悪いので、流れがわかればHyperoptへ移行してもいいと思います。
このほかKeras用の最適化ライブラリでTalosというものも試してみました。Talosもシンプルで簡単ですが、グリッドサーチやランダムサーチをベースにしているのか、最適化範囲や選択肢が増えると探索にとてつもなく時間がかかってしまったので一旦中止。
次は、Hyperoptで実装しなおすか、GpyOptを試してみようかと思います。

追記その1:
その後、max_evals=20で探索すると0.99200までスコアがあがりました。

追記その2:
さらに、max_evals=100まで試すと0.99271まで向上。
以下が最適化されたハイパーパラメータ:

{'Dense': 256,
 'Dense_1': 128,
 'Dropout': 0.01772328721174527,
 'Dropout_1': 0.4978692970747428,
 'Dropout_2': 0.13740853439432676,
 'Dropout_3': 0.01305834864014449,
 'batch_size': 32,
 'validation_split': 0.12455270876039955}

結構まっとうな値です。たまにDropout:0.7以上がでるときもありますが、今回はどれも0.5以下。
Denseの出力ユニット数はそれぞれ選択肢の最大値256と128なので、もう一段階512と256へ上げてもいいかもしれません。
GPU:GTX1060(6GB)で数時間回せばこのような結果が出せるのでそれなりに使えそうです。探索回数であるmax_evalsは最低でも100、もしくは500や1000で1日中回すのがいいかもしれません。

人気の投稿