grbl1.1+Arduino CNCシールドV3.5+bCNCを使用中。
BluetoothモジュールおよびbCNCのPendant機能でスマホからもワイヤレス操作可能。
その他、電子工作・プログラミング、機械学習などもやっています。
MacとUbuntuを使用。

CNCマシン全般について:
国内レーザー加工機と中国製レーザー加工機の比較
中国製レーザーダイオードについて
CNCミリングマシンとCNCルーターマシンいろいろ
その他:
利用例や付加機能など:
CNCルーター関係:



*CNCマシンの制作記録は2016/04/10〜の投稿に書いてあります。


ラベル Grbl の投稿を表示しています。 すべての投稿を表示
ラベル Grbl の投稿を表示しています。 すべての投稿を表示

2017年2月5日日曜日

Android GRBL Controller(スマホアプリ)

Android用スマホアプリのGRBL Controllerを見つけたので試してみました。
Instructablesに使い方が載っています(これを見るとこのアプリはGrbl0.9用?)。

まだBETA版のようです。スマホなので当然ワイヤレスですが、WifiではなくBluetooth通信のようです。以前CNCマシンにはBluetoothモジュールをつけておいたので、それを使って通信できそうです。
今はどちらかというとWifiモジュール(EPS8266など)が人気だと思います。数年前にワイヤレスUSBというのも一瞬でて、いつの間にか消えてしまいましたが、Bluetoothはまだいろんな機器に使われているので大丈夫そうです。
AliExpress.com Product - Free shipping! JY-MCU anti-reverse Bluetooth serial pass-through module, wireless serial, HC-05, master-slave 6pin for arduinoAliExpressだとBluetoothモジュールは341円(送料無料)で売ってますね。昔買った時の1/10以下の値段です。IoTによく使われているWifiのESP8266も300〜500円くらいです。いろんなテクノロジーがかなり安くなってきました。

接続開始:
まず、CNCマシンのBluetoothモジュールとスマホをペアリング。特にパスワードは設定してないのですが、パスワード(パスキー)要求画面が出てきて、設定していない場合は0000か1234を入れろと。0000はダメだったので1234を入れたらペアリング成功。

この画面をタップすると、スマホとペアリングしてあるBluetooth機器のリストが出てきて、その中から選択。この画面はもうすでに接続された状態です。

操作開始:

早速ジョグボタンを押してみると、UnlockもしくはMachine startを押せと出てきます。

Machine startを押すとロック解除、さらにこのように赤いEmergency Stopボタンになります。
そこでジョグボタンを押すと、あっさり動きました。おお、これはすごい。パソコンなしで、CNCマシンを動かしているということです。
下の方には、ホーミングなどのボタンもあります。
さらに上部にある他のタブを見ていくと、

ここは、Gコードファイルを読み込ませるところのようです。CloudにGコードファイルを上げて
おけば、すぐにここから作業ができそうです。ファイルの読み込ませ方はここに書いてありました。スマホのSD Cardにファイルを入れておかなければならないようです。しかもサブフォルダなどに入れず、ルートディレクトリ(トップの階層)に置かないといけないようです。
Single Blockボタンは、Gコードを1行ずつ実行するようです。Cycle Startは一気に最後までGコードを実行するようです。簡単なサンプルで試して見ると、Single Blockで1行ずつ実行させれば最後までいけましたが、Cycle Startだと途中で止まってしまいました。読み込みバッファあたりに問題があるのでしょうか?メモリー不足?

ここでは、Gコードを手入力できます。ためにし$$を入力するとGrblの設定が出てきました。しかし下の方にスクロールできない。

ここはGコードの中身を確認できるところのようですが、まだ使えないようです。

そして最後はマシン設定用画面です。先ほどのGコード入力画面でもできますが、ここで各項目に対応したパラメータを入力できるようになっています。

ということで、いまどきは何でもスマホという感じです。
bCNCのPendant機能やLaserweb3でもスマホから操作はできますが、パソコンがホストになる必要があるので、スマホはあくまでサブという位置付けです。しかし、このスマホアプリは、本当にスマホだけで操作できるというところがすごい。
画面が小さいので操作性は良くないかもしれないけれど、CNCも今やスマホゲームのような感覚で操作するということでしょうか。

6軸用アプリも:
さらには、6軸用のアプリもあります。新しいバージョンでしょうか?


しかしGRBLは3軸までしか対応していないけれど、本当に6軸も操作できるのでしょうか?

一応、操作画面には下の方にA Axis、B Axis、C Axisまであります。とりあえずソフト的には、6軸まで作っておいたということでしょうか。
まだこちらもBETA版なので、今後の進化に期待したいところです。

追記:
どうやらこの6軸アプリは、ArduinoMega2560用(6軸GRBLファームウェア搭載)に対応しているようです。
6軸ファームウェアをXloader(Win)、HexUploader(Mac)、Easy Flash Script(Linux)を使ってArduinoMega2560にアップロードすれば6軸CNCとして使えるようです(こちらに書いてあります)。
そもそもGrblControllerを開発していたZapmaker.orgがArduinoMega2560用に4軸用Grbl0.8〜も開発していたようです。Zapmakerの4軸用ファームウェア(Mega2560用)は、2014年を最後にGrbl-0.845までアップデートされています。おそらく、3軸では物足りない人たちのために、この6軸用ファームウェアが引き継いだ感じになったのかもしれません。

AliExpress.com Product - Free Shipping hc-06 HC 06 RF Wireless Bluetooth Transceiver Slave Module RS232 / TTL to UART converter and adapterもう少し安いBluetoothモジュールありました。327円(送料こみ)。
Bluetoothの親機と子機について:よくみるとこれはSlave(子機専用)かもしれません。多分、スマホが親機になればいいので大丈夫だとは思いますが、このページ上の方にあるBluetoothモジュール(341円)はMaster-Slaveと書いてあるので、親機・子機兼用なのかもしれません。調べて見ると、HC-05というのが親機にもなるタイプ、HC-06は子機専用らしいです。親子なら通信可能だけれども、おそらく子機同士は通信できないのかもしれません。スマホはBluetoothイヤホンなど接続できることから親機だと思うので、子機(HC-06)と通信はできるはずです。ただし、どちらも技適は通ってないので、原則的に国内での使用は認められていないということです(個人的に狭い範囲で使うなら大丈夫でしょう、まあよくある自己責任でということです)。 Amazonでも似たようなBluetoothモジュールが売ってます。これも中国からの配送だとは思いますが。
BluetoothモジュールとCNCシールドとの接続方法:
これは以前CNCシールドにBluetoothを接続実験した時の画像です。基本的に4本線で、CNCシールドTX端子---BluetoothRX端子(送信/受信)CNCシールドRX端子---BluetoothTX端子(受信/送信)CNCシールド5V端子---BluetoothVcc端子(電源:5V)CNCシールドGND端子---BluetoothGND端子(電源:GND)という感じでつなぎます。注意するところは、送信と受信という組み合わせになるようにTXとRXをクロス接続するところです。あとは、BluetoothモジュールがCNCシールドからの5V電源で大丈夫かどうか(3.3Vだったりしないか)。Grbl1.1のBaudrateが115200なので、それも合わせておいた方がいいのかもしれません。このアプリは実際のところGrbl0.9用で、InstructablesにはBaudrateを9600に変えろと書いてありますが、デフォルトのBluetoothモジュールを使う場合ということでした(BluetoothのBaudrateを115200に変えるにはATコマンドを使って設定し直します)。
接続するには、Gコード送信ソフトでBluetoothモジュールのシリアルポートを選ぶだけです。通信自体はUSBケーブル接続の時と同様にシリアル通信なので同じように通信するだけです。ただし、BluetoothのTXとRX端子は、Arduino UnoのD0とD1端子と接続することになるので、Arduino UnoとパソコンをUSB接続してシリアル通信するときに干渉してしまいます(同じピンを使っているため)。Arduino UnoとパソコンがUSBケーブルを通して通信しあうときは、BluetoothのTXとRX端子を抜くか電源を抜いた方がいいと思います。また、通常Arduino UnoはUSBケーブルでパソコンから電源供給されているので、パソコンと切り離すと別途外部電源(DC7〜12V/1A程度のACアダプターなど)が必要となります。

2017年1月26日木曜日

bCNCのインストールや使い方

普段は、G Code Sender(PC上のGコード送信ソフト)としてbCNCを使用しています。GrblのサイトUsing Grblに掲載されているGrbl1.1対応ソフトの一つでもあります。



bCNCの特長:
・Grbl1.1に対応(頻繁にアップデートされている)
・シンプルかつ機能も豊富
・Gコード以外にもdxfファイルも読み込み可
・Raspberry Piでも使用可能
・機能割当も含めボタンなどをカスタマイズできる
・リアルタイムでフィードやスピンドル出力調整可能
・Probe機能、オートレベリング機能(基板制作用)
・Gコードを視覚的に編集可能
・Pendant機能によりWifi環境下で他の端末(スマホなど)からも操作可能
・オフセットカット、穴あけ、タブ配置などの補助加工機能
・OpencvによるWebカメラを使った位置決め機能/映像モニタリング

まだ一部の機能しか使っていませんが、けっこう便利そうです。bCNCはPythonベースのソフトであるためPythonがPCにインストールされている必要があります。
bCNCのWikiページに一応OSごとのインストールの仕方がのっています(こちら)。


目次:
Pythonやモジュールのインストール方法:(事前準備)
Pythonのインストール方法
Pythonの有無/バージョンを確認するには
Pythonのディレクトリを調べるには
Pythonのバージョンを選んで起動する
pipやpyserialのモジュールの有無を調べる
pipをインストールする(Anacondaを使わない場合)
モジュールのインストールが上手くいかない場合
pyserialのインストール
pyserialがインストールされているか確認
bCNCのインストールや起動方法:
bCNCのインストール&起動
bCNCとArduino Unoとの通信開始
「Terminal」タブでGコード入力内容やエラーを確認
「Command:」欄にコマンドを手入力する
画面の調整
bCNCの利用方法:
bCNCの使い方(利用例)
bCNCの日本語化
ホーミング($H)について
リファレンス点復帰(G28、G30)
いつものやり方(ホーミングなし)
現在のGrbl設定
オーバーライド機能
.bCNC(不可視ファイル)で設定する場合
Pendant機能(スマホで遠隔操作)
Webカメラを使う場合
タブ自動配置機能
パスが選べないとき
オフセット(工具径補正)加工
アップデート確認
その他:
起動アイコン・ランチャー
PyenvとAnacondaを導入した場合
「conda activate py27」へ変更
アイコン画像のつくりかた(Mac)


Pythonのインストール方法:
Macの場合すでにApple-Python(root権限)がインストールされていますが、できればローカル環境に新たにインストールしたほうが無難です。
bCNCのインストールの仕方に書いてあるようにWindows/Macともにインストールできますが、まずはAnacondaというPythonパッケージ管理システムをインストールするのがおすすめです。Anacondaを使うとPythonやその他のモジュールなどを設定した環境内にインストール/アップグレードすることができます。AnacondaにはNavigatorというGUI操作でインストールやアップグレードができる機能もあるのでターミナルでコマンドを打ち込む必要もありません。またVSCODEやJupyter Notebookもボタンひとつでインストールできます。
AnacondaのGUI画面

Pythonには2.7系と3.X系がありますが互換性はないので、bCNCを使うならばPython2.7をインストールする必要があります。最近は3.X系が多くなってきたので面倒なのですが、これもAnacondaがあれば両方インストールしておいて必要に応じて簡単に切り替えることができます。
2020年4月以降、Python2がサポート切れとなったのでPython3を使う必要があります。
bCNCのwikiではpipを使用したインストール方法が紹介されていますが、以下はAnacondaをでインストールする場合についてです。個人的にはAnacondaを利用したほうが便利だと思うので。

インストールの流れとしては:
Anacondaのインストール(2021年現在Python3.8がインストールされる)。
・デフォルトだとbaseというAnaconda環境ができあがり、その中のPythonを使用することになる。
・Anacondaをインストールした場合は、pipを使ったインストールの代わりに必要なモジュールは「conda install 必要なモジュール」でインストールする。
・コマンドプロンプト、ターミナルを使って、pyserialをAnacondaでインストールする(conda install pyserial)

Macに入っているルート権限のPythonだとトラブルが起きた場合修復が面倒になるので、Anacondaなどの設定したローカル環境にPythonをインストールしたほうが何かと便利です。
Windowsの場合はいずれにせよ新たにPythonをインストールすることになるため、Anacondaをインストールしたほうがいいと思います。


Pythonの有無/バージョンを確認するには:
ターミナル(Mac)あるいはコマンドプロンプト(Win)を開き、
python -V
を入力。
Python 3.8.5
と表示されれば、Python3.8.5がインストールされていることになります。
*Anaconda利用の場合は、その環境内のPythonのバージョンが出てきます。


Pythonのディレクトリを調べるには:
which python(あるいはwhere python)
を入力。
C:\Users\username\anaconda3\python.exe(Windowsの場合)
/Users/username/opt/anaconda3/bin/python(Macの場合)
が表示されれば、このディレクトリのPythonが使われます。


Pythonから起動する:
Macの場合はダウンロードした「bCNC-master」フォルダ内にある「bCNC」ファイルをダブルクリックして起動することもできます。Windowsの場合は「bCNC.bat」をダブルクリックして起動。

bCNC-masterフォルダをDownloadフォルダ内へダウンロードした場合は以下のディレクトにあるはずです(Macの場合)。

/User/username/Downloads/bCNC-master

「bCNC-master」フォルダ内には「bCNC.py」ファイルがあるはずなので、それをターミナル(コマンドプロンプト)を使ってPythonで起動します。

python /User/username/Downloads/bCNC-master/bCNC.py


尚、起動アイコンのつくりかたは下のほうに書いてあります。


pipやpyserialのモジュールの有無を調べる:
python -c "help('modules')"
を入力。そうするとアルファベット順にたくさんのモジュールが出てきます。その中にpipとpyserialが入っていればインストールする必要はありませんが、初期状態では入っていません。
あるいは、
pip list
もしくは
pip freeze

Anacondaの場合は
conda list

pipをインストールする(Anacondaを使わない場合):
まずpyserialをインストールする前にpipをインストールします。
easy_install pip
を入力。もし管理者権限がないためにエラーがでるようなら、
sudo easy_install pip
と入力すると、
Password:
が表示され、管理者権限パスワード要求されるのでそのままパスワードを入力。パスワードを入力しても画面には表示されないので、そのまま入力。
問題なければpipがインストールされます。


モジュールのインストールが上手くいかない場合:詳細はこちら
python -m pip install -U pyserial --user
と入力すると、PC本体のシステム(ルート)ではなくユーザーごとのディレクトリにインストールされます。たまにシステムからインストール権限がないためエラーが出ることがあるので、この方法であれば大体大丈夫かと。
また、python2.7やpython3など、バージョンを使い分けてインストールするならば、
python2.7 -m pip install -U pyserial --user
python3 -m pip install -U pyserial --user
という感じになります。

インストールする場合に管理者権限パスワードが要求される場合は、ルートにインストールしているということなので、できればルートではなくユーザー以下のディレクトリかAnacondaなどで設定したローカル環境にインストールしたほうがトラブル回避につながります。

Anacondaであればこういったトラブルには遭遇しないかと思いますが、たまにバージョンの異なるモジュールをインストールしてコンフリクトを起こす場合もあります。Anacondaであれば、つくった環境ごと消去し再度環境をつくり直せばいいので簡単です。


pyserialのインストール:
pipを使ってpyserialをインストールする場合。
pip install pyserial
を入力。
管理者権限パスワードが必要なら、前回同様sudoを頭につけて入力(できれば管理者パスワードを使ってのルートへのインストールはしないほうがいいと思います)。
sudo pip install pyserial
もしアップグレードする必要があるならば、
pip install pyserial --upgrade
を入力。
上記の方法でインストールできない場合は、こちらの方法で。

Ancondaの場合は、
conda install pyserial


pyserialがインストールされているか確認:
python -c "import serial"
を入力してエラーがでなければ、pyserialがインストールされたことになります。
あるいは、先ほどの
python -c "help('modules')"
を入力し、モジュールリストの中から確認。
もしくは
pip list
あるいは、
pip freeze

Anacondaの場合は、
conda list


bCNCのインストール&起動:
bCNCのこのページの緑色のボタン「Clone or download」から、「Download ZIP」をクリック。

適当なところにダウンロードし、解凍すると「bCNC-master」フォルダが出来上がります。「bCNC-master」フォルダを開き、Macなら「bCNC」、Winなら「bCNC.bat」をダブルクリックで起動。

ダブルクリックしても起動しない場合は、ターミナル(コマンドプロンプト)を起動して、以下のようにPythonを使って直接プログラムを立ち上げることもできます。

python C:\Users\username\Downloads\bCNC-master\bCNC.py(Winの場合)
python /User/username/Downloads/bCNC-master/bCNC.py(Macの場合)
*上記usernameは各自のユーザー名。

毎回この方法で起動するのが面倒という場合は、下の方に書いてある「起動アイコン・ランチャー」の作り方を参考に独自の起動コマンドを作成するといいと思います。

Gitを使ってのインストール方法などについてはこちらへ(本家)


bCNCとArduino Unoとの通信開始:
Arduino UnoとUSB接続しbCNCを起動したら上部「File」タブを押す。
Serial内のPort:でArduinoのポート選択、Baud:115200、Controller:Grbl、「Open」ボタンで接続開始。
Status:Alarmになったら、上部「Control」タブに切り替えて(以下画面)、
「Unlock」で解除(あるいは$Xをコマンド入力)。そうすると、Status:Idleに変わります。「Unlock」しないと以後の操作ができないので要注意。
「Open」ボタンを押しても、Status:Not connectedのままなら「Reset」ボタンでやり直し。

Unlock後(Idle状態)、下のほうにあるジョグボタン(十字ボタン)の操作が可能となります。
ジョグボタン右側にある数値10.0は10.0mm、ボタン一回で進む量です。一度に進む量は数値の周りにあるボタンで調整できます。
ジョグボタン中央の○ボタンは、WPos加工原点(0,0,0)に戻るボタンです。
「Home」はホーミングサイクル($H)、まだ設定していない場合は使えません(ホーミングについてはこちらへ)。
エラーなど生じたら「Reset」でソフトをリセット。



「Terminal」タブでGコード入力内容やエラーを確認:
上部右端「Terminal」タブを選択すれば、ボタン操作した内容がGコードとしてコンソール画面上に確認できます。ボタン操作したのに反応がないときは、ここでエラーがでているか確認できます。
先ほどのジョグボタン中央の○ボタンは、
G90G0X0Y0Z0
というコマンドを送信したことになっています。ボタン送信によるコマンドの内容を変更したい場合は、そのボタンを右クリック(あるいは中クリック)で設定し直すことができます。


「Command:」欄にコマンドを手入力する:
ボタン操作以外に、画面左下の「Command:」欄に直接Gコードを手入力できます。
「Unlock」ボタンのかわりに、$Xなどと直接打ち込んだほうが早いかもしれません。


画面の調整:
ラズパイ用の小さな画面に表示している際は画面がはみ出てしまうことがありますが、以下のように画面内の表示エリアを調整すれば大丈夫な場合もあります。
「State:」はクリックすれば折りたたむことができ、下の「Control」や「Command:」の表示エリアが少し上にあがります。また、中央の画面境目を左右に動かすことで、左右画面幅を調整することができます。


bCNCの使い方(利用例):
以下は、これまでのbCNC使用例のリストです。
G Code Sender(bCNCなど)
bCNCでGrbl1.1レーザーモードの実験
Jscutでオフセットカット設定、bCNC上で加工原点を移動する
Gコード38.2のプローブ設定とbCNCプローブ機能
Raspberry Pi3にbCNCをインストール&Pendant機能で遠隔操作
bCNCのIPカメラ化(実験段階)

また、CNCマシン使用前の設定についてはこちらへ。リンク先では、bCNCではなくUniversal-G-Code Sender(UGS)を使用していますが、手入力設定なのでbCNCの画面左下のCommand:に同様のコマンドを入力することで設定可能です。


bCNCの日本語化:
最近(2017/01/22)、bCNCも日本語化されたようです。画面右上のほうに言語タブがあり、Japaneseが選べるようになっています。最新のbCNCをダウンロードしてみたら設定変更できました。
bCNCを他言語化するには、このページにやりかたが書いてあります。このあたりは、オープンソースなので利用者(参加者)によって徐々に改良されていくという感じですね。おかげで見やすくなりました。まだ部分的に日本語になっていないところもあるので、このページのやり方で追加更新していけそうです。


ホーミング($H)について:
bCNCの「Home」ボタンを押すと、Grblにおける$Hコマンドが送信され、ホーミングサイクルが開始します(詳しくはこちらへ)。ホーミングを可能にするためには、XYZ軸にリミットスイッチをつけ、Grblの設定$22=1にしておく必要があります。ホーミングサイクルが終了すれば、CNCマシンは自分の位置(MPos:マシン座標)を把握できるようになりますが、ホーミングサイクルをしなくてもWPosを基準にして加工作業はできます。


リファレンス点復帰(G28、G30):
ホーミング後、G28(リファレンス点復帰)やG30(第2リファレンス点復帰)を入力することで、作業エリア中央やツール交換場所などの任意の位置へ自動で移動することができます。その設定をするには、ジョグボタンなどで任意の位置まで行き、その位置でG28.1あるいはG30.1を入力します。そうすると、その場所の座標がG28やG30用に登録されるようです(個人的には使ったことありませんが)。


いつものやり方(ホーミングなし):
だいたいは作業エリア中央で加工しているので、個人的にはホーミングは普段使っていません。MPos(機械座標)は無視して、WPos(加工座標)だけで以下のような流れでやっています。
・CNCマシン電源投入、bCNCと接続
・bCNCの「Open」ボタン(接続開始)、「Unlock」ボタン(初期ロック解除)
・材料を任意の場所(作業エリア中央付近)に固定する
・材料の左手前角(加工原点)までジョグボタンでXY軸を移動
・エンドミル先端を材料上面と接するまで(紙1枚はさんで)ジョグボタンでZ軸を下げる
・bCNCで「X=0」、「Y=0」、「Z=0」を押す(加工原点設定)、G92 X0 Y0 Z0でも可
・エンドミル先端を10mmほど上に戻しておく(安全のため)
・Gコードファイルを読み込んで加工開始
*Gコードファイル内の加工パスも、材料左手前角を加工原点にしておき、加工開始点は材料左手前角、加工終了後も材料左手前角に戻ります。
*Grbl設定は、$20=0(ソフトリミット:OFF)、$21=1(ハードリミット:ON)、$22=1(ホーミング:ON)にしてあります。


現在のGrbl設定:各設定コマンドについてはこちらへ
$0=10 (step pulse, usec)
$1=25 (step idle delay, msec)
$2=0 (step port invert mask:00000000)
$3=2 (dir port invert mask:00000010)
$4=0 (step enable invert, bool)
$5=0 (limit pins invert, bool)
$6=0 (probe pin invert, bool)
$10=3 (status report mask:00000011)
$11=0.010 (junction deviation, mm)
$12=0.002 (arc tolerance, mm)
$13=0 (report inches, bool)
$20=0 (soft limits, bool)
$21=1 (hard limits, bool)
$22=1 (homing cycle, bool)
$23=0 (homing dir invert mask:00000000)
$24=30.000 (homing feed, mm/min)
$25=600.000 (homing seek, mm/min)
$26=25 (homing debounce, msec)
$27=5.000 (homing pull-off, mm)
$100=320.000 (x, step/mm)
$101=320.000 (y, step/mm)
$102=320.000 (z, step/mm)
$110=1000.000 (x max rate, mm/min)
$111=1000.000 (y max rate, mm/min)
$112=400.000 (z max rate, mm/min)
$120=10.000 (x accel, mm/sec^2)
$121=10.000 (y accel, mm/sec^2)
$122=10.000 (z accel, mm/sec^2)
$130=740.000 (x max travel, mm)
$131=940.000 (y max travel, mm)
$132=190.000 (z max travel, mm)


オーバーライド機能:
Grbl1.1からはリアルタイムで加工中にもフィードやスピンドル出力数を可変制御できるようになりました。bCNCのControlタブを選択すれば以下のようなスライダーが表示されます。
この状態であれば、フィード100%(上段の100という数値)であり、スライダーを使って25%〜200%まで調節できます。Resetを押せば瞬時に100%の位置に戻ります。
その下のSpindleボタンでスピンドルON/OFF切り替え、スライダーで回転数(レーザーであれば出力数)を調整できます。ただし、スピンドルに関してはTTL端子付きの可変出力制御可能なスピンドル用ドライバを接続しておかないとこの機能は使えません。
スライダーにおける回転数や出力数は、Tools>Configで設定します。

スピンドルの回転数表示にしたい場合は、Spindle max(RPM)の欄へ使用しているスピンドルの最大回転数に合わせた数値を入力しておきます。こうすることで、回転数(RPM)から判断したいときは見やすくなると思います。
レーザーの場合は回転数ではないので、M3やM4で設定するS値(S0〜S1000)やワット数など入れておくといいと思います。
尚、設定したら一度bCNCを再起動する必要があります。


.bCNC(不可視ファイル)で設定する場合:
上記のTools>Configでマシンに合わせた設定がある程度できますが、ここで設定できないようなことは.bCNCファイル(不可視ファイル)に書き込むことで可能になるようです(本家説明はこちら)。
.bCNCファイル(不可視ファイル)の場所は、ダウンロードした「bCNC-master」フォルダ内ではなく、パソコンのユーザーディレクトリ内にあります(Macなら/User/username/.bCNC)。
不可視ファイルを見えるようにするには(Macの場合)、ターミナルから、
defaults write com.apple.finder AppleShowAllFiles -boolean true
そして、
killall Finder
を入力します。これで不可視ファイルが見えるようになります。
元に戻すなら、
defaults delete com.apple.finder AppleShowAllFiles
そして、
killall Finder
を入力し不可視ファイルを見えない設定にします。

Windowsにおける不可視ファイルの表示/非表示に関しては、こちらが参考になるかと

追記(Mac用):
もっと簡単なのは、ファインダーを開き、左側のリスト内にあるホームディレクトリを選択し、「command+shift+.(コマンド+シフト+ピリオド)」で可視/不可視に切り替わります。


Pendant機能(スマホで遠隔操作):
CNCマシンとUSB接続してあるパソコン上のbCNC画面から操作する以外に、Wifi環境があればPendant機能を使うことで、他の端末(スマホなど)からも遠隔操作可能となります。エンドミル先端と材料との距離を見ながら、手元のスマホで加工原点合わせすることも楽になります。
File画面↑で、Playボタン(Start pendant)を押せばすぐに使えます。他の端末のブラウザで「localhost:8080(あるいは192.168.X.X:8080などのローカルIPアドレス+ポート番号)」にアクセスすれば、以下のような操作画面が出てきます。
Androidタブレット上の画面です。
ここで、|Home|Unlock|Reset|の下に「Idle」が表示されていれば使うことができます。「Disconnected」と表示されている場合は、再接続した方がいいと思います。


Webカメラを使う場合:
パソコン(ホスト側)に接続したカメラ(Opencv、PIL:要インストール:pip install opencv pillow)をオンにすれば(以下の赤丸のボタン)、
http://localhost:8080/camera.html(あるいは192.168.x.x:8080/camera.htmlなど)にスマホなどからアクセスしてカメラ映像を見ることができます。例えば、スピンドル近くに設置したカメラで加工状況などをカメラを通して確認できます。

関連:bCNCのIPカメラ化(実験段階)


タブ自動配置機能:
ルーターやフライス加工の際に、加工後半で部品が材料から完全に切り離されて、部品そのものの固定が不安定になってしまう時があります。そうならないようにTool>Tabsボタンで部品の周囲にタブ(部分的に部品と材料とつなげておく処理)を配置することができます。bCNCのwikiに説明が載っています(こちら)。
Gコードの一番下のパスだけ選んだ後、Tabsボタンを押すと画面左に設定項目が出てきます。

ここで、タブの数、配置間隔、大きさ(Dx、Dy)、高さ(マイナスの値で入力)を設定。
この画面上部のTabsを押すと黄色いタブが生成されます。その後、Cutボタンを押し、厚みや深さなど設定し(場合によってはStockボタンの方でも材料の厚みなど設定し)、Cut設定項目上部のCutボタンを押すと、一番下のパスにタブ(一段上がったパス)が出来上がります。


パスが選べないとき:
もし、一番下のパスだけを選択できない場合は、すべてのパスが一つのHeaderやblockに入っているのかもしれません(Editorタブの画面に切り替える)。そのような時は、一番下のパスが含まれているパス用のフォルダを展開し、以下のように真横に視点を変えて、選択ツールで一番下のパスだけを囲んで選びます。
その際、左側に見える選択したパスの内容を確認して、抜けているような部分も含めてGコードをカットします。

左側のパス用フォルダのリスト上でペーストすると、先ほどカットした一番下のパスだけのデータがblockという名前で出てきます。ペーストされたフォルダの上下の順番を変えるにはUp/Downを押します。その後、一番下のパスを選ぶ時は、このパス用フォルダをクリックすることで選べるようになります。
不必要なフォルダはDeleteボタン、新たにフォルダを追加する時はAddなど、ここでGコードの編集が可能です。


オフセット(工具径補正)加工:
例えば、直径6mmのエンドミルを使用している場合、加工パス(加工する軌道)は、図面外形線に対して3mm分(エンドミル半径)外側や内側を通らなければいけません。bCNCではこの補正(オフセットしたパスを描く)も可能です(InkscapeやJscutでも可能)。
まず、Toolタブで画面を切り替えProfileボタンを押します。
そうすると画面左に設定画面がでてきます。
例えば、3mm外側をオフセット加工するなら、以下のように入力します。
Direction: outside(図形外側にオフセット)
Additional offset distance: 3.0(この場合3mm)

そして、オフセットしたい図形を画面内で選びます(青線になる)。
設定項目の上にある横長のProfileボタンを押せば、選択した図形の線(パス)が、3mm外側にずれてくれます。
この機能を使わずに、InkscapeやJscutなどであらかじめオフセット加工用のパスに変換しておくこともできます。もしオフセットされていないデータを使用するなら、このようにしてbCNC上でも可能となります。


アップデート確認:
Fileタブ画面内のUpdatesボタンで使っているbCNCが最新かどうか確認できます。


こんな感じで表示されますが、自動的にアップデートしてくれるというわけではないようです。Git pullでアップデートできるのかもしれませんが、そのままサイトからダウンロードした方が早いかもしれません。
常に開発中(改良中)のオープンソースなので、微妙にエラーなどでたりする時があります。調子が悪かったり、きちんと機能しない部分があるときは、アップデートした方がいいかもしれません。


起動アイコン・ランチャー:
テキストエディタで、「bCNC-launcher.sh」などと名前をつけたファイルをつくり(「.sh」の拡張子は省略可)、中にはシェルコマンドを書いておきます。

#!/bin/bash
cd `dirname $0`
python bCNC.py

シェルコマンドとしては、このコマンドファイルが置かれているディレクトリへ移動して、そこでPythonでbCNC.pyを起動という感じです。ちなみに、「`dirname $0`」に使われている「``」はバッククオート(Shift + @)で、「''」のシングルクオート(Shift + 7)とは違うので要注意。
記入したらファイルを閉じて、このファイルに実行権限を与えるため、

chmod +x bCNC-launcher.sh

と打ち込みます。
そして、このコマンドファイルを「bCNC-master」フォルダ内に入れておきます。あとはエイリアスをつくってデスクトップやDockに配置しクリックすれば起動するようになります(Macにおけるアイコンのつくりかたについては次の項目に書いてあります)。


PyenvとAnacondaを導入した場合:
PythonでプログラミングもするためAnacondaを導入したことから、

source activate py27
python bCNC.py

などとPython2.7の環境に切り替えてから起動するときもあります(「py27」はAnaconda内につくった任意の環境名)。しかしながら、pyenvとAnacondaの両方を導入すると「activate」が競合してしまうので以下のようなシェルスクリプトとなります。

#!/bin/bash
source ~/.pyenv/versions/anaconda3-5.1.0/bin/activate py27
cd `dirname $0`
python bCNC.py

Anacondaの仮想環境「py27」に入り、このスクリプトのあるディレクトリへ移動し、そこでpythonにてbCNC.pyを起動させるという感じです。pyenvのコマンドである「activate」と競合してしまうため、Anacondaの「activate」のフルパスを書き込んでいます。解決方法は以下。


「conda activate py27」へ変更:
このためなのか、conda4.4以上からは仕様が変わったようで、「source activate py27」と入力するよりも「conda activate py27」の使用が推奨されているようです。その場合は、「.bashrc」もしくは「.bash_profile」に書いてあるパスを書き換える必要があるようです(こちらに説明がかいてあります)。
試してみたところ、「.bash_profile」に(「.bashrc」には書かない)、

export PYENV_ROOT=$HOME/.pyenv
export PATH="$PYENV_ROOT/bin:$PATH"
eval "$(pyenv init -)"
. $PYENV_ROOT/versions/anaconda3-5.1.0/etc/profile.d/conda.sh
conda activate base

を書き込んでみました。5行目の「conda activate base」を書き込むと、Anacondaの「base(ルート)」環境に入った状態でターミナルが起動するので、それが嫌ならなくてもいいかもしれません。
そして環境を変えるには「source activate py27」のかわりに、

conda activate py27

を入力します。
これでpyenvとの競合がなくなったと思います。
またアイコン用のシェルスクリプトなら、

#!/bin/bash
. ~/.pyenv/versions/anaconda3-5.1.0/etc/profile.d/conda.sh
conda activate py27
cd `dirname $0`
python bCNC.py

とすればいいと思います。


アイコン画像のつくりかた(Mac):
任意の画像をアイコンにするには、画像ファイルをPreviewなどで開き、画像をセレクトオールでコピーしておきます。
そして、先ほどつくったコマンドファイルを右クリック「情報を見る(command+I)」で表示させ、左上にあるアイコン画像をクリック選択してペーストすればアイコンとして表示されます。


この他の機能については今後追記していきます。

2016年12月18日日曜日

Grbl1.1 Laser Modeの実験

さてGrbl1.1のレーザーモードの実験をしてみました。
前回も書きましたが、Grbl1.1では新たにLaser Modeが加わり、その中でもM4コマンドをつかった(従来まではM3)Dynamic Laser Modeという、レーザーヘッドの移動スピードに比例するようにレーザー出力をリアルタイムで調節してくれる新機能があります。今までは、スピードが落ちがちなパス折り返し地点や出だしの部分などで、焦げが目立っていましたが、それが解消(緩和)されるというわけです。どの程度効果あるのか、そしてどんな設定やコマンド操作するといいのか試してみました。
結果的には、従来に比べけっこう使えるんじゃないかという感じです。

使っているG Code SenderはbCNCです。今回は90度の扇形(半径20mm)の図面を描いて実験です(Inkscapeで描画、Laser Tool Plug-inでGコード生成)。直線部分、角の部分、そして円弧がある図形という感じです。特にいままでは、角の部分で焦げが目立っていましたが、どうなるかいくつかのパターンで試してみました。
画面左↑にGコードがあります。ちょうど水色の部分にM03があり、ここをM4に変更したりS値を少し書き換えていくつかのパターンをつくってみました。
結果は以下。
材料は厚さ2.2mmのシナベニヤ板。半径20mmの扇形。5.5Wダイオードレーザー使用。
まずは下の段から、
左端は、従来のM3 S1000 F200でカットしたもの(やや角に焦げが見えます)。
左から2番目、M4 S1000 F200。Dynamic Laser Modeなので、あまり角が焦げていません。なかなか効果あり。

M4でもS値を入力する必要がある:
ここで疑問に思ったことがあり(前回の投稿での疑問でもありましたが)、M4はスピード(フィード)に合わせてレーザー出力するのなら(M4の場合、スピードが0だと出力も自動的に0なる)、S1000はコマンド入力しなくてもいいんじゃないか?ということで試してみると、M4だけで出力値Sを入れないでRunさせると、レーザー自体出力していませんでした。つまり、M4 S1000などと出力したい値(おそらく100%のときの出力値)を入力しないとダメです。
ということで、右から2番目のが、M4 S500 F200。出力を半分に下げてのDynamic Laser Mode。少しわかりにくいかもしれませんが、左から2番目のS1000よりは弱いかなと。
わかりにくいので、右端がS100まで出力を落としたDynamic Laser Mode。ということから、M4の場合、Sの値は上限値という感じです。

レーザーモードのオン・オフ設定:
ただ、注意点としては、M3の場合は最初に$32=0という感じで、レーザーモードをオフにしておき、M4を使うなら$32=1に設定変更が必要です。M4での作業が終わればまた$32=0に戻すという感じ。M4が便利そうなので、$32=1のままでよさそうですが(M3はもはや使わないかも)。

リアルタイムオーバーライド機能:
それから、実験結果画像の上のほうにあるのは何かというと、Grbl1.1からはReal-time Overridesが使えるようになったので、もともとbCNCについているオーバーライド機能を使ってみたという結果です。
bCNCには、FeedやSpindleをリアルタイムで調節できるスライダーがついています。加工中ではないときでも、Spindleボタンを押せば、レーザーオン・オフや出力調整が可能です(いきなりレーザー光がでるので注意が必要です)。この画像↑の場合、Feedが最大200になっています。
追記:調べてみると、どうやらこの200は200%とということらしいです。100が100%でそれに対し、25%〜200%で可変制御可能ということみたいです。
このようにスライダを右にずらせばフィード50%などに変更できます。これを加工中(レーザー照射中)に変更するとどうなるかというのが、実験結果画像の上段です。上の段真ん中が、M4で加工中にフィードを200%から50%まで下げてみた結果です。Dynamic Laser Modeなので、理論的にはフィードが途中で変わっても、それに合わせて出力変化してくれるので、均一な加工結果になるはずです。ぐりぐり少しいじったので、円弧の部分でややムラがありますが、縦のラインはフィード200%で横のラインがフィード50%ですが、だいたい同じくらいの出力になっている感じなので、効果はでていると思います。

実験結果画像上段の右端は、M3で同じように加工中にリアルタイムでフィードを変化させたものです。Dynamic Laser Modeではないので、当然200%から50%に下げれば、それだけ焦げが多くなるはずです。まあ、そういう結果になっているので、やはりリアルタイムで調節可能ということが分かりました。

まとめ:
Dynamic Laser Modeはけっこう効果あります(焦げが少なくなるために、きれいに切断できる)。
Dynamic Laser ModeでM4を使うときは$32=1(レーザーモードON)にする。
従来のコマンド(M3)の場合は、
M3 S1000(レーザーON、出力100%)
でしたが、
Dynamic Laser Mode(M4)の場合は、
M4 S1000(S値:レーザー出力上限値、S500なら最高50%で出力)。
リアルタイムでフィード(25%〜200%)や出力値(0〜100%)も調整可能。
結果的には、Grbl1.1のほうがGrbl0.9よりずっと優れている。

要するに、どうすればいいかというと、Gコード上ではM4 S1000で出力値MAX、フィードもやや速め(M3のときの設定に比べれば1.5倍〜2倍)に設定しておき、bCNCならスライダで出力値やフィードを調整するという手順になるかと。なので、今回の実験のように、いちいちGコードファイルを開いて編集する必要もないと思います。

Inkscape Laser Tool Plug-inでの設定:
例えば、Inkscape Laser Tool Plug-inを使うならば、
こんな感じで、
Laser ON Command: M04、
Laser Speed: 200(これはやや速め/レーザーのW数による)、
Laser Power S#:1000(ここはGrblのスピンドルMAX出力値の1000)
にしておいてGコードを生成。
あとでbCNCなどのG Code Senderのほうで出力値やフィードは現場調整という感じ。

bCNCの画面折り畳み機能:
これはレーザーモードには関係ないですが、bCNCの場合以下のようにState▲をクリックすると、画面が折り畳めます(しばらく気づかなかった)。
bCNCの全体表示画面が大きすぎるとき(Raspberry Piの小さなモニターのときなど)、折りたたみ機能を使えば大丈夫というわけです。

2016年12月14日水曜日

Grbl1.1 Laser Mode:レーザーモードについて

grbl1.1からはLaser Modeが新たに追加された点が個人的には嬉しいことです。
特に、Dynamic Laser Power Scaling with Speedという機能がいままでにはない優れた機能だと思います。レーザーカット作業において、今までは特にパスの折り返し地点付近で焦げめが目立っていたのが、この機能で緩和され、より自然な切断が可能となりそうです。

grbl0.9までのレーザーカット作業の手順:
Inkscapeで図面(図形)を描画
・Inkscape ExtensionのLaser Tool Plug-inで出力設定してGコード生成(gcodeファイルで保存)
bCNCでgcodeファイルを読み込み加工作業
という流れでした。

Gコード的には(Laser Tool Plug-inで自動的に書き込まれる)、
M3(レーザー出力オン)
S1000(出力100%)
M5(レーザー出力オフ)
S0(出力0%)
M30(プログラム終了)
という感じでした。

主にM3を出力オンとして使っていましたが、grbl1.1ではM3だけでなくM4もあるようです。覚え書きのためにも以下に書いておこうと思います。

Grbl1.1のLaser Mode:
Grbl1.1 Laser Modeのページを見てみると、
まず、レーザーモードにするには、
$32=1
を入力するようです。当然レーザーを使わないときは$32=0に戻しておかなければいけません。

M3 Constant Laser Power Mode:
これは、いままで通りのモードと考えていいようです。スピンドルならM3は時計回りの回転ですが、レーザーには時計回りなど関係ないので、とりあえずM3で出力オンにしていたというわけです。ちなみにM4はスピンドル反時計回り、M5がスピンドル停止。

M4 Dynamic Laser Mode:
これが今回改良されたDynamic Laser Power Scaling with Speedのことだと思います。M4はスピンドルでは反時計回りですが、ここではそのMコードをかわりにつかっているようです。
このレーザーモードにおけるM4は、レーザーヘッドのスピードに合わせて出力を調整してくれる機能で、動き出した瞬間や折り返し地点などでスピードが落ちてしまったときに、それに合わせて出力も落としてくれる(焦げにくい)という感じです。まだ実験していないので、どのくらい効果あるのか分かりませんが。
この特性のためかM4の場合、レーザーヘッドが動いていないときは出力が0になるようです。仮に消し忘れたとしても、ヘッドが止まっている限りはレーザー出力0になるのでいちいちオフにする必要がないらしいです。
つまり、
$32=1
M4
を最初に入力すればいいということでしょうか?(追記:M4 S1000などと入力する)
しかし、基準となる出力(素材に合わせた出力値)はどこで設定するのかまでは書いていません。もしかしたら、設定済みの加工最速フィードを100%出力に設定してあるのかもしれません。それとも、M4 S500とでも入力すれば、最速でS500(50%出力)ということになるのでしょうか?
この機能がすべての素材に適合するかどうかは分からないので、事前に要テストして欲しいと書いてあります。
やはり、試してみないとまだわからないという感じです。いずれにしても、以前の使い方(M3)にも切り替えられるし、結局は使い分けという感じになるでしょうか。
いちいち手入力でGコードを修正するのも面倒なので、以前Laser Tool Plug-inのエラーを解消したときのように、Laser Tool Plug-in自体はpythonで書かれているためソースコード自体を改造すればいいかもしれません。

PWM周波数:
ちなみに、スピンドル用PWM周波数は、デフォルトで1kHに設定されているようです。
それが記述されているcpu_map.hファイルを見てみると、
おそらく145行目のこれ↑のことかと思います。Laser Tool Plug-inのJ-tech laser仕様に合わせているようです。厳密には0.98kHz。これを142〜143行目のどれかに変えれば、PWM周波数を高く設定できるようです。これを見る限り16bitではなく8bitみたいですね。
$32=1でレーザーモードがオンですが、grbl1.1の質問スレを見ると、$32=2や$32=3のようなオプションもあるようなことが書いてあります。実際どうなるか試してないので分からないですが。

ということで、M3とM4のカットの違いをそのうち試してみて、近々結果を報告したいと思います。
追記:実験結果はこちら

最新版Grbl1.1をインストール

早速grbl1.1をインストールしてみました(Macの場合)。基本的にはgrbl0.9のインストールと同じようです(grbl0.8と0.9のインストールについてはこちら)。
注意としては、もうすでにgrbl0.9や0.8などをArduino IDEに以前インストールしてある場合は、保存されるフォルダ名が同じなので、一旦古いのは捨てたほうがいいです(もしくは古い方をリネームしておくとか)。
Macの場合なら、
/Users/username/Documents/Arduino/libraries内のgrblフォルダ(旧バージョンのgrbl)を捨てる。

Arduino IDEによるインストール方法:(インストールの仕方はこちらを参照
このページの緑色のボタン(Clone or download)のDownload ZIPを選択。
「grbl-master.zip」ファイルがダウンロードされるので、それを解凍すると「grbl-master」フォルダが出来上がります。
次に、Arduino IDEを立ち上げて、メニューバー>スケッチ>ライブラリをインクルード>.ZIP形式のライブラリをインクルードを選択(以下)。
そうすると、ファイル選択の画面がでてきて、先ほど解凍した「grbl-master」内の「grbl」フォルダを選択(以下)。
そして、Arduino IDEのメニューバーでファイル>スケッチの例>grbl>grblUploadを選択(以下)。
そうすると、以下のようなgrblのプログラムが書かれた画面がでます。
注意書きとして、ここには何も書き込まないようにと。

あとは、ArduinoボードをUSB接続して、「検証」「マイコンボードに書き込む」を押してアップロードします。メモリめいっぱい使って書いてあるコードなので、書き込みが不安定になることがあるような注意がでますが、なんとか書き込めればOKです。

たまに、中国製Arduinoボードの場合、シリアル通信用のICが違うためか(CH340など使用している)、Arduino IDE上のシリアルポート選択でボードのポートが見当たらないときがあります。そのため専用ドライバが必要な場合もあります。「CH340 Arduino」などで検索すると、専用ドライバが見つかると思います。

Arduino IDEのシリアルモニタでgrbl設定内容確認:
Arduino IDE画面の右上にあるシリアルモニタ機能を使ってアップロードしたgrblの内容を確認してみます(アップロード後、一度Arduino IDEを再起動してみたほうがいいかもしれません)。
こんな感じ↑で、「Grbl 1.1e ['$' for help]」が先頭にでます(ボード再接続やIDEの再起動しないとでないかもしれません)。画面右下のbaudrateは115200bpsを選択。
$$
を入力してリターンを押せば、このような各設定がでてくるかと思います。
あるいは、$I(ドル大文字アイ)を入力すれば、
[VER:1.1e.20161208:]
というように、バージョンとビルドされた日付がでてきます。
あとは、CNCマシンに合わせて各項目を設定していけば、すぐに使えると思います。
ちなみに、grbl0.9までは$xの各項目のあとに()でそれぞれの説明/コメントがついていましたが、メモリ削減のためgrbl1.1ではカットしたようです。

Universal-G-Code-Senderの場合:
以下はUniversal-G-Code-Senderの画面。バージョンは1.0.9です。
使っているArduinoボードのPortを選び、Baud:は115200、Openボタンを押すと先ほどと同じように、「Grbl 1.1e ['$' for help]」がでて、$$入力で各種設定内容が出てきます。

古いG Code Senderだとダメっぽい:(理由不明/もしかしたら大丈夫かも)
ためしに、やや古いバージョンである1.0.7でやってみると(以下)、
冒頭に「Grbl 1.1e ['$' for help]」は出て来たのですが、$$を入力しても反応なし。
画面中ほどにある「Show verbose output」にチェックを入れてみると、このような↑反応がずらずらと止まることなくでてきました(追記:これは1.0.9でも同じでした)。まだ理由は分かりませんが、1.0.9では大丈夫だったので、この際grbl1.1にすると同時にUniversal-G-Code-Senderも1.0.9の最新版にアップデートしておいたほうがよさそうです。

同様にbCNCの場合もそうでした。ということから、grbl1.1にバージョンアップするなら、G Code Senderも最新のものにしたほうがよさそうです(理由不明)

追記:
上記画面でShow verbose outputにチェックを入れると、このように連続的に状況がアウトプットされるので、通常はチェックを入れないでおく方がいいです。

その他エラーなど:
Known Issuesに書いてありましたが、USBシリアル変換チップであるCH340Gが搭載されているArduinoボード(特に中国製クローンに多い)でシリアル通信のエラーが発生するらしいです(いまのところ対応策なし)。
同様にAtmel 16U2(ATmega328ではなく)を搭載してあるボードにも同様のエラーが生じるようです。解決方法などはKnown Issuesのリンク先にのっています。

ということから、grblを使うならATmega328搭載のArduinoボードのほうがよさそうです。

以下は個人的メモ:grbl0.9jの時の設定内容(grbl1.1へこの設定を引っ越し)
$0=10 (step pulse, usec)
$1=25 (step idle delay, msec)
$2=0 (step port invert mask:00000000)
$3=2 (dir port invert mask:00000010)
$4=0 (step enable invert, bool)
$5=0 (limit pins invert, bool)
$6=0 (probe pin invert, bool)
$10=3 (status report mask:00000011)
$11=0.010 (junction deviation, mm)
$12=0.002 (arc tolerance, mm)
$13=0 (report inches, bool)
$20=0 (soft limits, bool)
$21=1 (hard limits, bool)
$22=1 (homing cycle, bool)
$23=0 (homing dir invert mask:00000000)
$24=30.000 (homing feed, mm/min)
$25=600.000 (homing seek, mm/min)
$26=25 (homing debounce, msec)
$27=5.000 (homing pull-off, mm)
$100=320.000 (x, step/mm)
$101=320.000 (y, step/mm)
$102=320.000 (z, step/mm)
$110=1000.000 (x max rate, mm/min)
$111=1000.000 (y max rate, mm/min)
$112=400.000 (z max rate, mm/min)
$120=10.000 (x accel, mm/sec^2)
$121=10.000 (y accel, mm/sec^2)
$122=10.000 (z accel, mm/sec^2)
$130=740.000 (x max travel, mm)
$131=940.000 (y max travel, mm)
$132=190.000 (z max travel, mm)

人気の投稿