grbl1.1+Arduino CNCシールドV3.5+bCNCを使用中。
BluetoothモジュールおよびbCNCのPendant機能でスマホからもワイヤレス操作可能。
その他、電子工作・プログラミング、機械学習などもやっています。
MacとUbuntuを使用。

CNCマシン全般について:
国内レーザー加工機と中国製レーザー加工機の比較
中国製レーザーダイオードについて
CNCミリングマシンとCNCルーターマシンいろいろ
その他:
利用例や付加機能など:
CNCルーター関係:



*CNCマシンの制作記録は2016/04/10〜の投稿に書いてあります。


2017年10月28日土曜日

データセット:CIFAR-100の読み込み/tflearn DCGAN

引き続きDeep Learningの画像生成GAN(Generative Adversarial Network)について、いろいろ試しています。最近では3DデータのGANもあるようです。このThe GAN ZooというところにはいろんなGANがのっていますが、とりあえずは、鮮明な合成画像をつくりだすことが可能なDCGAN、そして一方の属性を他の属性へ合成するDisco GANなどを試そうと思っています。

GANの前にVAEの学習:
GANを勉強するためには、その前にVAE(Variational Autoencoder)を理解したほうがいいということで、ここしばらくはVAEを勉強していました。VAEを学ぶ前には、Autoencoderというアルゴリズムがあり、それは簡単な仕組みなのですが、VAEになるとかなり難しい概念が登場してきます。

・Autoencoder:簡単なエンコード/デコードのアルゴリズム
・VAE:正規分布、ベイズ推定、変分ベイズ、KLダイバージェンスなどの知識が必要

VAEの場合、途中で確率分布に置き換えるという手法が特に難解だったのですが、そういう手法をとることで、デコード(生成や再現)が可能となるというのは、なかなかの発見でした。その他の生成モデルにおいても確率分布を使うことがあるので、このあたりの手法はある程度理解しておいたほうが後々役に立ちそうです。

ということでVAEも面白いのですが、そろそろGANに移行しようということで、いろいろサンプルを物色していました。主にはTensorflowを使っていますが、最近のGANのソースはPytorchで書かれているものも多く、Kerasなども含め比較的シンプルに書けるライブラリが増えてきたようです。tflearnというTensorflowをシンプルにしたライブラリもあり、かなり短いコードで書くことができます。

tflearnでDCGANを試す:
tflearnのexamplesにあるdcganのサンプルはたった138行しかないので試してみました。しかし、このサンプルはこのままだとエラーがでるようで、この訂正のページ(dcganの欄)にあるように102、103、110行目の最後に「,2」を追加する必要があります。訂正すれば動くのですが、このdcganのサンプルも相変わらずMNIST(手書き文字)であり結果はあまり面白くはないです。せっかく画像生成のアルゴリズムなので、もう少し面白い画像を使ったほうがいいのですが、気の利いたデータセットがないというのが現状でしょうか。前回Udemyのコースで試したCelebA(セレブ顔画像) ならまだましかもしれません。

データセットについて:
他にデータセットはないかと探してみましたが、こちらに詳しく書かれています。
MNIST:手書き数字、70000(Tr:55000/Vl:5000/Te10000)、白黒、28x28px、
CelebA:セレブ顔、202600、カラー、178x218px
CIFAR-10:10クラス、60000(10x6000)、カラー、32x32px
CIFAR-100:100クラス、60000(100x600)、カラー、32x32px
Fashion MNIST:洋服/靴/鞄など10クラス、60000+10000、グレー、28x28px
ImageNet:未登録のため画像ダウンロードはまだ使えない(そのうち)
Google/Open Images:膨大すぎてつかいにくそう(そのうち)

すぐにダウンロードして使えそうなのは、それほどない。プログラムを書いてWebからスクレイピングする方法もあるかもしれないけれども、数万単位でのイメージが必要そうなので、個人で集めるには面倒。いまのうちからコツコツ集めておけば、かなりの価値になるにかもしれないけれども。
以下はCIFAR-10(10種類のクラス)。


CIFAR-100をダウンロード:
ということから、今回はなんとなく無難なCIFAR-100を試してみることに。こちらの記事を参考にスクリプトを書いてみました。データはCIFARのサイトにあるCIFAR-100 Python versionをダウンロードしました。解凍すると、そのまま画像が出てくるわけではなく、各画像はすでに1次元のデータになっているようです。ニューラルネットに画像データをインプットするならそのまま1次元がいいとは思いますが、必要に応じて2次元(3チャンネルカラー)に変換したり、あるいはグレースケールに落としたりすることもあります。

import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import os

def unpickle(file):
    import cPickle
    with open(file, 'rb') as fo:
        dict = cPickle.load(fo)
    return dict

def get_cifar100(folder):
    train_fname = os.path.join(folder,'train')
    test_fname  = os.path.join(folder,'test')
    data_dict = unpickle(train_fname)
    train_data = data_dict['data']
    train_fine_labels = data_dict['fine_labels']
    train_coarse_labels = data_dict['coarse_labels']

    data_dict = unpickle(test_fname)
    test_data = data_dict['data']
    test_fine_labels = data_dict['fine_labels']
    test_coarse_labels = data_dict['coarse_labels']

    bm = unpickle(os.path.join(folder, 'meta'))
    clabel_names = bm['coarse_label_names']
    flabel_names = bm['fine_label_names']

    return train_data, np.array(train_coarse_labels), np.array(train_fine_labels), test_data, np.array(test_coarse_labels), np.array(test_fine_labels), clabel_names, flabel_names

def get_images(name):
    tr_data100, tr_clabels100, tr_flabels100, te_data100, te_clabels100, te_flabels100, clabel_names100, flabel_names100 = get_cifar100("../large_files/cifar-100-python")
    #print(clabel_names100)
    images = []
    for i in range(len(tr_flabels100)):
        if tr_flabels100[i] == flabel_names100.index(name):
            #im = tr_data100[i].reshape(3,32,32).transpose(1, 2, 0) #(32,32,3)
            im = tr_data100[i].reshape(3,32,32)
            im = im[0]/3.0 + im[1]/3.0 + im[2]/3.0
            images.append(im)
    return images

これをutil.pyなどと保存して、先程のtflearnのdcganサンプルで使ってみました。ある特定のジャンルを学習できるように、ラベル名に対応した番号のみを読み込むということにしています。元画像はカラーですがグレースケールに変換しています。
get_images('bicycle')
とすれば、自転車の画像だけ合計500個読み込むということです。
ちなみにCIFAR-100の場合、clabel_names100という20種類の大きなクラスとflabel_names100というさらに細かい100種類のクラスに分かれているようです。
flabel_names100[9] = 'bicycle'
という関係なので、
tr_data100[9]
が、ある自転車の画像となります。画像はランダムに配置されているようで、forループである特定の種類の画像を抜き出すようにしています。
以下が、CIFAR-100のクラス。

clabel_names100 = [
'aquatic_mammals', 'fish',
'flowers', 'food_containers',
'fruit_and_vegetables', 'household_electrical_devices',
'household_furniture', 'insects',
'large_carnivores', 'large_man-made_outdoor_things',
'large_natural_outdoor_scenes', 'large_omnivores_and_herbivores',
'medium_mammals', 'non-insect_invertebrates',
'people', 'reptiles',
'small_mammals', 'trees',
'vehicles_1', 'vehicles_2']

flabel_names100 = [
'apple', 'aquarium_fish', 'baby', 'bear', 'beaver', 'bed', 'bee', 'beetle', 'bicycle', 'bottle',
'bowl', 'boy', 'bridge', 'bus', 'butterfly', 'camel', 'can', 'castle', 'caterpillar', 'cattle',
'chair', 'chimpanzee', 'clock', 'cloud', 'cockroach', 'couch', 'crab', 'crocodile', 'cup', 'dinosaur',
'dolphin', 'elephant', 'flatfish', 'forest', 'fox', 'girl', 'hamster', 'house', 'kangaroo', 'keyboard',
'lamp', 'lawn_mower', 'leopard', 'lion', 'lizard', 'lobster', 'man', 'maple_tree', 'motorcycle', 'mountain',
'mouse', 'mushroom', 'oak_tree', 'orange', 'orchid', 'otter', 'palm_tree', 'pear', 'pickup_truck','pine_tree',
'plain', 'plate', 'poppy', 'porcupine', 'possum', 'rabbit', 'raccoon', 'ray', 'road', 'rocket',
'rose', 'sea', 'seal', 'shark', 'shrew', 'skunk', 'skyscraper', 'snail', 'snake', 'spider',
'squirrel', 'streetcar', 'sunflower', 'sweet_pepper', 'table', 'tank', 'telephone', 'television','tiger',
'tractor',
'train', 'trout', 'tulip', 'turtle', 'wardrobe', 'whale', 'willow_tree', 'wolf', 'woman', 'worm']

全体では60000イメージあるのですが、一つのクラス(種類)は500個のイメージしかなく、Disco GANのように何か特定のジャンルを学習させようとすると画像数が足りなさすぎというのを後から気づきました。CIFAR-100はいろんな種類の画像があるかわりに画像数が少ない。CIFAR-10なら一つの種類で画像が6000あるので、まだましかもしれませんが、10種類しかジャンルがない(選びたいジャンルがない)。というわけで、思い描いているようなものを学習させて、それらを合成させたいということがなかなかできません。あくまで、すでに用意されている範囲でのジャンルを使って、試すということくらいしかできないというのが現状。

Deep Learningを実験していくには、数学を含めたアルゴリズムの勉強だけでなく(特にベイズ推定をつかった確率論的モデルなどが面白そう/今後より重要になっていくらしい)、データセットについても揃えなければいけないという難問があり、さらにはこのような画像生成をするなら、GPUマシンも必要という感じで、やはり先に進めば進むほど敷居が高くなってきます。段々面白くはなってきたけれども、色々面倒なことも増えてきました。

ベイズ推定については、この動画も面白い。今までの固定的な考え方が変わりそうな感じです。

変分ベイズ学習 (機械学習プロフェッショナルシリーズ)
Posted with Amakuri at 2017.10.29
中島 伸一
講談社
販売価格 ¥3,024

2017年10月20日金曜日

ESP32:SPIFFSファイルアップローダー

ようやくESP32のSPIFFファイルアップローダーが出来上がったようです。これでESP8266のように、Webサーバーをたてたときにindex.htmlなどの付属する外部ファイルを、Arduino IDEを使ってESP32内にアップロードできるようになりました。
ファイルアップローダーについてのページはこちら

インストール方法:
リンク先のこのページから、ESP32FS_v0.1.zipをダウンロードし解凍。
Macの場合は、toolsディレクトリを以下のようにつくって、そこに入れろということです。

~/Documents/Arduino/tools/ESP32FS>tool>esp32fs.jar

以前、ESP8266のときには、Arduino.app内にインストールしたので、Arduino.appを右クリックして「パッケージの内容を表示」してから、
Arduino.app>Contents>Java>tools>ESP32FS>tool>esp32fs.jar
となるようにインストールしても大丈夫そうです。
ただし、今回のアップローダーをインストールする前に、最新のArduino-esp32ライブラリをインストールし直したほうがいいかもしれません(古いのを捨てた後、再度このページからインストールし直しました)。

インストール後、Arduino IDEでさっそく試してみました。
まずは、「スケッチの例>SPIFFS>SPIFFS_Test」のサンプルを開き、いくつか内容を書き換えて別名保存します。とりあえず、HTMLファイル(index.html)だけをアップロードしてみました。

ファイルの追加とアップロード:
用意したindex.htmlを「スケッチ>ファイルを追加」で追加します。
追加されたかどうか、「スケッチ>スケッチのフォルダを表示」で確認。
そうすると、こんな感じで自動生成されたdataフォルダ内にindex.htmlが追加されています。
あとは、この状態でindex.htmlをESP32内へアップロードします。
ファイルアップローダーがきちんと所定の場所へインストールされていれば、上のように「ESP32 Sketch Data Upload」が表示されているので、これでアップロードします。このへんはESP8266のときと同じ要領

アップロードされた内容のチェック:
アップロードされた内容をチェックするために、以下のreadFile()のところを少し変更。file.readString()を使って読み込み、シリアル出力させてindex.htmlの中身をチェック。

void readFile(fs::FS &fs, const char * path){
    Serial.printf("Reading file: %s\n", path);

    File file = fs.open(path);
    if(!file || file.isDirectory()){
        Serial.println("Failed to open file for reading");
        return;
    }

    Serial.print("Read from file: ");
    while(file.available()){
        //Serial.print(file.read());
        Serial.print(file.readString());
    }
}

あらかじめ、String contentsなどと文字列型変数を用意しておいて、Serial.print(file.readString());の代わりに、contents=file.readString();とすれば変数contentsへ文字列として渡すことができるかと思います。
そして、loop()内にシリアル通信キー入力で内容確認できるようにしてみました。

int val;

void loop(){
  if(Serial.available()>0){
    val=Serial.read();
    if(val=='l'){
      listDir(SPIFFS, "/", 0);
    }else if(val=='r'){
      readFile(SPIFFS, "/index.html");
    }else if(val=='d'){
      deleteFile(SPIFFS, "/index.html");
    }
  }
}

このようにサンプルのSPIFFS_Test.inoを多少内容変更して別名保存後ESP32へアップロード。
シリアルモニターを開いて、'l'でルートディレクトリ内を表示、'r'でindex.htmlの読み込み、'd'でindex.htmlを消去。
そうすると、シリアルモニターの画面では、

ルート内ディレクトリの表示(1〜2行目)、
index.htmlの読み込みと内容表示(3〜18行目)、
index.htmlの消去(20〜21行目)、
再度ルート内ディレクトリの表示(22行目)
という順番で出力され、問題なく機能しているようです。
これで、やっとESP8266同様ファイルアップロードが使えるようになったわけですが、同時にMicropythonのバイナリデータもアップロードできるようになったので、もしかするとMicropythonを搭載したほうがいろいろと便利かもしれません。

最近はもっぱらDeep Learningばかりで、ESP32やRaspberry Pi Zero Wもあまりやっていませんが、ESP32もけっこう環境が整ってきたようなので、そのうち何かに使ってみようと思います。

AliExpress.com Product - Lolin ESP32 OLED Module For Arduino ESP32 OLED WiFi + Bluetooth Dual ESP-32 ESP-32S ESP8266 OLED Module Board1206円(送料無料)この液晶画面がついているESP32 Lolin(Wemos)が便利そうです。

2017年10月13日金曜日

Udemy: GANs and Variational Autoencoderのコース

前回まではConvolutional Neural Networks(CNN)をやっていましたが、GANが気になるのでそちらのコースも受講してみました。CNNのほうはもう少し復習する必要があるのですが、このへんになるとどれも難しいので、とりあえず一番興味あるGANを先回りしてやってみようという感じです。


このUdemyのGANコースでは、前半にオートエンコーダーを学びます。前回のConvolutional Neural Networks(CNN)では元画像を畳み込んで圧縮したりフィルターをかけていましたが、畳み込みはせずにニューラルネットでエンコードすることを実験し、最終的にはエンコードされた画像を再現するようなデコード技術を学びます。画像補間処理のようなものですが、混合ガウス分布というまたもや数学的に難しい内容がでてきます。このあたりの処理になると、確率分布や乱数を使って複雑な方法で画像再現していくようです。一回見ただけではなかなか理解できないので、現在も復習中です。実際のところは、scikit-leranなどのライブラリにはGaussian Mixture modelsの関数が用意されているので、複雑な計算をせずに済みます。ただし、パラメータやどのような特性があるかはある程度理解しておく必要があります。

今回のコースはかなり複雑なことをしているせいか、数学的な説明も多いという感じです。しかも画像メインなので、簡単なサンプルコードであっても出力が終わるまでかなり時間がかかります。
これは最初のオートエンコーダーのサンプルで、一層の隠れ層でReLU、シグモイドで出力という簡単なものです。元画像を参照して再現出力するのでほぼ同じ結果。そのため面白くないけれども、簡単なオートエンコーダーをコーディングする練習になるのでいいかもしれません。

次はVariational Autoencoder(VAE) です。エンコードした後に確率分布を使ってデコードするという技術のようです。KLダイバージェンスという二つの確率分布の違いを測る式を用いて、その差を縮めるような計算をしていくようです。仕組み的には段々抽象的になってきているので、もう少し勉強しなおしたほうがよさそうです。ただ、収束させにくい式をこういった収束可能な式に置き換えて何とか計算可能にしている数学的な工夫が面白いです。当然、数学に詳しくないとこのような発想すら思い浮かびません。
理屈で考えるとかなり難しいのですが、どうやって少ない情報から大きな情報へと再現していくのかというのは徐々に分かってきました。しかしながら、この辺のレベルになると一つ一つがかなり難しい。

そして、いよいよ二つのニューラルネットを切磋琢磨させるかのように使うGANsです。今回は最初にMNIST(手書き数字)で試したあと、画像生成のサンプルでよく見かけるCeleb顔画像を使ってGANを試してみました。このCeleb顔のデータセットがでかすぎる。元画像は一枚178x218pxあり、それがなんと202600枚もあります。

こんな感じで解凍すると、このナンバリングが202600まで続きます。合計で1.78GB。

この178x218pxの画像を64x64pxに切り取って、それをサンプルにします。202600枚あるので、もちろんすべてプログラミング上で自動処理です。

そして、いざGANのサンプルコードをランさせると、50イテレーションごとに一枚生成し約15〜18秒かかります。出力中にYoutubeなど見ていると演算が遅くなったりします。ミニバッチ学習をさせているので、合計で1epoch3165回。これで終わりなのかと思ったら、2epochあるので合計6330回です。計算中も次々画像が出てきます。途中でやめようかと思いましたが、ためしに最後までやってみようと、そのままつけっぱなしで次の日をむかえてもまだまだやっていました。
結局、ここにあるように104804秒(約29時間)かかりました。せいぜい数時間かと思っていたら、1日以上かかったということです。強力なGPUマシンが欲しくなる気持ちが分かります。10〜20倍くらい早くなるそうです。

50回目:まだ始まったばかりなのではっきりしていません。50回ごとに、このような画像が一枚出力されます。

200回目、少し色が濃くなってきました。メリハリがでてきた感じ。

1100回目、それっぽくなってきました。

3000回目、かなり良くなってきたものと、まだ変なものもいくつかあります。特に気になるのが赤い顔の人たち。おそらく約20万枚あるうち何枚かが赤い画像だったのかもしれません。

4500回目、よくみると変なのもありますが、それぞれ固有の色味がでてきたような感じです。人種も様々。

6300回目(最後:127枚目)、もうそれほど完成度があがると言う感じではなさそうですが、平均的な顔というよりはきちんと個性が見て取れるような気もします。合成しているうちに全部似てくるときもあるようですが、今回の場合はそんなことはなさそうです。しかし、よく見ると変なのもまだあります。特に左端の下から3番目は、右向きと左向きの顔が合成されたためか、中央だけ細く存在しています。

見比べると確かに向上しているような気もしますが、やや絵画っぽい作風にも見えます。この出力結果が面白いかどうかというよりも、GANの特長である二つのニューラルネットが互いに競い合うことで生成されるアルゴリズムの仕組みが面白いです。この手の画像生成の技術は次々と新しいのがでているので日々見逃せないという感じです(The GAN Zoo)。

ということで、目標としていた画像生成であるGANのサンプルを試すことができたのですが、単にサンプルを動かしただけなので、これで終わりというわけではありません。ここから、自力でコーディングできるようになるために、かなり難しい理論なども乗り越えながら勉強していく感じです。それにしても、それぞれいろんなアルゴリズムがあって、かなり面白い世界だと思います。ものの考え方もけっこう変わりそうです。

関連:

2017年10月9日月曜日

Convolutional Neural Networksのコース

Deep Learningのなかでも、特にGANなどの画像生成の技術に興味があるのですが、その一歩手前としてConvolutional Neural Networks(CNN)も勉強してみようかと、いろいろ探していました。CourseraのDeep Learningのコース4であるConvolutional Neural Networksはまだ開講していないため、もうしばらく待たないといけません(以下)。

Courseraと同様に、UdacityのDeep Learningコースもまだwaiting listのようです(かなり人気あるのかも)。
ほかにも、fast.aiでも無料でCNNの授業はあるようです。一見よさそうなのですが、AWS(有料)を使うようで登録やセッティングがめんどくさそうです。


あとは、前から気になっていたUdemyのDeep Learning: GANs and Variational Autoencodersと同じシリーズのDeep Learning: Convolutional Neural Networks in Pythonというコースです。

GANのコースはあまりないので(fast.aiにはある)、この↑のGANのコースをいずれは受講したいと思っているので、割引価格で1200円(書籍を買うよりも安い)だし、試しにどんなものかということも含めてCNNコースを受講してみることにしました。

Udemy: Deep Learning: Convolutional Neural Networks in Python
このコースでは、TheanoTensorflowの二種類異なる方法でコーディングするようです。Theanoは使ったことはないですがそれぞれメリット/デメリットがあるようで、この他のライブラリも含めどれがいいのかはほとんど好みという感じかもしれません。ただし、Theanoは次の1.0(現在0.9.0)をもって開発終了らしいです(原文)。


このコースの特長としては、試験や課題というものはありません。当然期限もありません。専用の質疑応答のフォーラムはあるので、有料の動画コンテンツ(英語)と質問応答の権利を購入するという感じです。授業で使うサンプルコードに関しては、このコースを受講していなくてもgithubからすぐに手に入ります。
授業内のアルゴリズムや数学的な説明は非常に端的で分かりやすいと思います。数分〜10分程度の動画が合計4時間分あります。ただ動画を眺めているだけではだめで、ノートをこまめにとるとか、コピペなど使わないでコードを書き、実際手を動かすことを強く勧めてきます。たしかにプログラミングの場合はそうしたほうが覚えが早くなります。
数学に関しては、他のコースでも言っていましたが、それほど深く理解しようとする必要はなくて、ライブラリの関数をどう使うのかということに慣れたほうがいいようです。このコースは理論の理解というよりも、コーディングに重点をおいているという感じです。しかし、いきなり本題に入るまえに、簡単なサンプルコードを試したり、いくつかの段階を経て、最後にはまとまったコードを書くということになります。このCNNのコースは上級者向けのようで、基本的なPythonプログラミング、機械学習の基礎は学んでおかなければいけません。たしかに、少し敷居が高そうです。このコース以外にも段階やジャンルに応じていくつかコースがあるので、内容に追いつけない場合は他のコースも同時にやったほうがいいのかもしれませんが、それだけお金がかかってしまいます。

最初のほうのCNNの説明は以下ようなステップになっています。

初心者にとっては、どのような手順で理解していけばいいのか分かりにくいので、このような段階的な説明があると理解しやすくなります。
Convolutionに関しては、まずはフィルターという概念で、Hello worldをしゃべる音源にエコーフィルターを加えるアルゴリズムを書いて実験するところから始まります。次に画像にぼかしフィルターを加えたサンプルで実験します。このへんは最初のエクササイズという感じです。このエクササイズを通して、変換された元データからConvolutionということを感覚的につかんでいきます。その後はこのフィルタリングされた画像をニューラルネットワークに入力して、CNNへと発展させていく感じです。
コーディングはTheanoとTensorflowの2種類用意してあり、もし普段からTensorflowを使っているのであれば、Theanoのコードは使わなくもいいと思います。
できるだけコピペしないで一通り書いてみました。コーディングすると、一行ずつ何をしているのかが分かるので、その分理解も深まります。Theanoのほうでもコーディングしてみると、二つの方法で書くので、さらに理解が深まる感じです。
CNNの大体のパターンはわかったのですが、まだ自力でコーディングはできないので、もう少し繰り返す必要がありそうです。もう少し慣れてくれば、コースに頼らなくても自力で他のサイトなど見ながら勉強していけそうです。

あとで気づいたのですが、CNNは上級者向けで、最も興味あるGANのコースは中級者向けなので、こちらのコースのほうを先にやってみてもよさそうです。

2017年10月4日水曜日

スタンフォード大:CNN for Computer Visionのレクチャー動画

CourseraのDeep Learningコース(コース1〜3)も終わってしまったので、次を探しているところです。興味あるのはConvolutional Neural Network(CNN)、そしてGenerative Adversarial Network(GAN)などのコンピュータービジョンや画像生成に関するアルゴリズムです。

いろいろ調べていると、スタンフォード大のCNNのシリーズレクチャーがありました(以下)。
この動画は今年(2017年)のもので、もうすでに第1回から16回まであります(1動画/約1時間:合計約16時間)。
CS231n: Convolutional Neural Networks for Visual Recognition
というスタンフォード大の授業の動画らしいです。
シラバスのページにはコースマテリアル(資料)のリンクもあり、これに従って一通りCNNについては勉強できそうです。今年の授業なので情報も最新だと思うし。
どうやらこの授業は、今年4/4から開始され、週2回のペース、途中に課題提出などもあり、6/12まで続いていたらしいです。週2回なので、かなりハイペースでやっていると思います。それにしても授業計画ならびにその内容がすごい。いまのアメリカの優れた大学はこんな感じなんですね。
このCNNコースを受講する前に、予備知識としてCS229:Machine Learning(Andrew Ng)を受講しておくといいと言ってますが、これはCourseraのMachine Learningコースの元となっている授業だと思います。
スタンフォード大学コンピューターサイエンス講義リストを見ると、CS230: Deep Learning(Andrew Ng)という授業があり、受講者はCourseraのDeep Learningコースを受けるようと書いてあります。どうやら、CS230の授業とCourseraの授業は同じようです。実際のCS230の授業では、トピックに合わせたさらなるレクチャー、ゲストレクチャーなどがあるようです。シラバスによると、CNNの授業は7週目の11/6からのようなので、それまでにはCourseraのConvolutional Neural Networksも開講するのではないでしょうか。ということであと一ヶ月くらい先という感じ。

追記:
このスタンフォード大学のCNNの動画をしばらく見てみましたが、初回だけFei-Fei Li先生の講義があって、その後はドクターの学生がスライドを見せながらCNNについて講義というか説明しています。教科書の内容をそのまま解説しているだけの授業という感じで、あまり頭に入ってきません。やはり、Andrew NG先生の教え方がいかに上手かというのが分かります。

2017年10月3日火曜日

Coursera: Deep Learning/ コース2、コース3終了

引き続きCourseraのDeep Learningコースのコース2と3を受講しました。

・コース2(3週間):Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization
・コース3(2週間):Structuring Machine Learning Projects

コース2においてはRegularization、Dropout、Normalization、ハイパーパラメータの調整、Batch Normなど、けっこう細かなテクニックを学びました。ニューラルネットというよりも、メインのモデルをより効率的に計算していくスキルといった感じです。これもまた実践的な場面ではよく用いられているテクニックのようで、すべてを完璧に習得したというわけではないのですが、それぞれがどんなものなのかということがわかったし、ディープラーニングの世界で用いられているボキャブラリーが増えてよかったと思います。
コース2の後半では、いよいよTensorFlowを用いたプログラミング課題が登場してきました。このままTensorFlowでどんどんプログラミングしていくのかと思ったら、そうでもありませんでした。いままではNumpyだけを使いフルスクラッチでプログラミングしていたけれども、TensorFlowのようなライブラリを使えば一行で済みますよという程度の内容でした。そうこうしているうちにコース2も終わり最後のコース3に突入してしまいました。

コース3ではもうプログラミング課題はなくて、1週ずつ最後に15問のクイズがあるだけです。しかしそのクイズが実際の現場でのケーススタディという設定で、ディープラーニングをつかったシステムを構築している際のデータセットの扱い方や様々なエラーの対処法などに関する問題です。
たしかにこのコースは理論的というよりも実践的スキルと知識を身につけて、すぐにでもこの業界に就職できるかのような教え方をしています。
当初は、ディープラーニングを使った様々なアルゴリズムを習得できると想像していましたが、中心となるアルゴリズム(モデル)に対する細かなテクニック(コース2で学んだ内容)のほうがどちらかというと重要という感じです。あるモデルをつくっても、それが機能するようにするにはデータの扱い方や様々な調整/最適化が必要で、この辺はなかなか独学だと身につけにくい部分かと思います。そんな感じでコース3もあっという間に終わってしまいました。

 コース2の修了書。

コース3の修了書。

結局、現在開講されているDeep Learningコースの1~3を1週間の無料期間内に終わらせてしまいました。前回、受講したMachine Learningコースと重なっている部分もあったので、1〜2週間分を1日で終わらせたというペースです。特にコース1の前半とコース3はすぐに終わってしまうので(動画を見てクイズに答えるだけ)、実質コース1の後半とコース2を数日かけて勉強すればいいという感じです。個人的にはコース2が一番勉強になりました。
1週分約2時間の動画を手書きのノートでメモをとりながら見続けるという感じです。動画を見ているだけだと覚えが悪いので、ノートをとったほうがその後動画を見直す回数もかなり減って効率が上がります。ただ問題は、日本語字幕はまだ準備されていない部分がほとんどなので、英語で覚えないといけないというところでしょうか。
前回、約1ヶ月ほどかけて受講したMachine Leaningコース(11週)のほうが内容が濃かったような気もします。Deep Learningコースは1〜3まで合わせても9週しかないし、そもそも初心者向きでもあるため、それほど大変な内容になっているというわけでもないような気がします。Machine Leaningコースは次から次へと面白いアルゴリズムがでてきてその都度わくわくしましたが、Deep Learningコースはより実践的というか、普段データサイエンティストの人たちがどのようなこと(地味な作業も含めて)やっているのかというのがわかりました。
やはりおすすめは、Machine Learningコース(11週:無料)を受講して、従来の機械学習で基礎を学んでから、その延長というか最近の動向にあわせたDeep Learningコースを受講する順番がいいかと思います。Deep Learningコースも初心者向けなので、このコースから受講してもいいとは思いますが、細かい部分まではあまり丁寧に教えてくれないという感じです。

Deep Learningコース4は一番興味あるCNNなのですが、まだ開講していないので、しばらくは他のコースでもまたのぞいてみようかなと思ってします。

2017年10月1日日曜日

Coursera Deep Leaning Specialization: Course 1 終了

CourseraのMachine Learningコースが終わってしまったので、引き続きDeep Learningコースを受講することにしました。このコースは$49/月の有料コースですが、最初の1週間はお試しということで無料です。前回のMachine Learningコースが充実していたので、1週間すぎて有料になっても構わないと思い、とりあえず登録してみました。


Deep Learning Specializationというコースで、大きくは以下のコースで構成されています。

・コース1(4週):Neural Network and Deep Learning
・コース2(3週):Improving Neural Networks: Hyperparameter tuning, Regularization and Optimization
・コース3(2週):Structuring Machine Learning Projects
・コース4(未定):Convolutional Neural Networks
・コース5(未定):Sequence Models

特に興味があるのがコース4のCNNですが、まだコース4と5は開講していません(そろそろ開講するらしいですが)。コース単体での受講もできるようですが、せっかくなので順を追って受講し、コース4までは到達したいと思っています。

UdemyのGANコース:
しかしながら、同時にUdemyの以下のGANのコースも気になっています。こちらも有料(1200円/割引価格)のコースです。
個人的にGANを使った画像生成に興味があるので、このコースを受講してみたいのですが、まだまだDeep Learningの知識やスキルも追いつかないと思うので、CourseraのDeep Learningコースが終わったら、このGANのコースも受講してみようかと考えています。

以前から独学で機械学習を学んでいたけれども、このようなオンラインコースを受講したほうが理解が早いということが、前回のCoursera Machine Learningコースで分かったので、興味あるコースをいろいろ調べています。書籍で勉強してもいいのですが、書籍だとおそらく途中で投げ出してしまいそうなのと、こういった専門領域の書籍は値段的に結構高いので、必要以上に書籍は購入しないようにしました。情報的な内容に関しては、論文なども含めてかなりネットからも入手できるし、わざわざ専門書を買うまでもないかと。それとこのようなコースだと知識だけでなく、プログラミングの課題もあるので、理解というよりも実践的なスキルが身につくような気がします。


Coursera コース1(4週):Neural Network and Deep Learningを開始
ということで、早速Courseraのこのコースを開始してみました。Week1は概要やこのコース自体の説明などで、特にプログラミングするなどの技術的なことはしませんでした。前回受講したMachine Learningコースとも内容が重なる部分もあるので、さらっと聞き流す感じでも大丈夫でした。同じように動画途中でのミニクイズがあり、Week最後にあるクイズは前回のコースでは5問でしたが10問(8問以上正解で合格)に増えていました。このクイズが結構難しくて、というのも英語なのでよく読まないとすぐに間違ってしまいます。前回のコースでも何回もやり直しました。
Week2からようやく実際的な内容に入っていくわけですが、前回のMachine Learningコースで学んだ内容と重なっている部分も多いという感じです。
ただ今回のコースはPython(Jupyter Notebook)、Numpyを使うので、それに合うアルゴリズムになっているのか微妙に違います。個人的には、Numpyよりも前回使っていたOctave言語のほうがシンプルで分かりやすいという印象でしたが、Numpyにも慣れるという意味で前回の復習も兼ねてすすめてみました。前回のコースのおかげか、Week2まではあっさり終わってしまい、残すところWeek3とWeek4だけです。
Week3からより本格的にニューラルネットワークの勉強です。それと同時にNumpyに則した行列計算方法や偏微分の説明が何回も出てきます。Week最後のプログラミング課題はブラウザ上でJupyter Notebookを使うので、以前のコースよりも便利になったという感じです。相変わらず数行を穴埋めしていく課題なので難しくないのですが、PythonやNumpyには慣れていないと記述の仕方がわかならくなるときもあります。そうやってNumpyにも慣れていきつつ、Week4に入ってしまいました。
この週で最後、複数のレイヤーを持つニューラルネットワークの実装です。相変わらずバックプロパゲーションは面倒で、前回のコースでもやったので原理は分かるのですが、複数層に対応できる一般化した式をいざNumpyで実装となるとけっこう大変でした。前回のコースでもフォワードプロパゲーションとバックプロパゲーションを復習しておきたいと思っていたので、今回Numpyで試してみてまたさらに理解が深まったという感じです。
Week4の最後のプログラミング課題は、一旦計算した値をキャッシュに記憶させておいたり、連想配列のようなディクショナリに変数を登録しておいたりというテクニックを多用しているので、このへんが慣れなくてForumを覗いてなんとか実装することができました。Numpyにおける、forループを使わない行列計算の方法、ブロードキャストなども慣れていないので、Deep Learningの内容というよりはNumpyについてももう少し勉強が必要という感じです。


コース1(4週):Neural Network and Deep Learning終了
無料期間(1週間)ということで試しに受講してみましたが、3日くらいで終わってしまいました。前回のMachine Learningコースを受講していれば、Week1と2は聞き流す程度でもいいと思います。実質、Week3とWeek4をやればいいのかもしれません(それぞれ1日ずつ)。
成績は94.4%です。プログラミング課題はすべて100%で提出しましたが、クイズ(10問中8問正解で合格)のやり直しはせず、そのままどんどん先に進んで行った結果です。もう少し理解を確実にするために復習は必要だと思いますが、次のコース2も受講し始めてしまいました。早くCNNやGANまで進みたいため急ぎがちになってしまいますが、そもそも機械学習やDeep Learning自体が面白いのでついつい次へと進んでしまいます。


受講してみての感想:
このコースは初心者向きらしく、その分前回のMachine Learningコースを受講した人にとっては物足りないかもしれません。コース5まである最初のコースなので基礎的内容が多く仕方ないのかもしれませんが、その後に控えているコース2〜5に期待したいところです。
個人的には、前回のMachine Learningコースがあまりにもよかったことから結構期待していたのですが、前回ほどすごいという印象ではありませんでした。教え方も前回のほうが丁寧だったような気がします。しかし、それは機械学習(従来の方法)とDeep Learning(最近の方法)という範疇の違いから、そうなるのかもしれません。初心者向けなので機械学習に通じる基本を一通りおさらいしつつ、すぐにDeep Learningに入っていくという感じなのかもしれません。たしかにどんどん複雑になっていくので、基本にばかり時間をさいていてもダメなのかもしれません。
ただし、実践力を身につけるという方向性は変わってはいないと思うので、すぐにも役立ちそうなスキルをどんどん教えてくれると思います。
日本語環境はまだそれほど整っていないので、英語に抵抗がある人にはきついかもしれません。しかし数式やソースコードが読めれば、英語が多少分からなくてもなんとかなるとは思います。

コースの修了書を受け取るためには本人確認書類をCourseraに送付しなければいけません。日本語で記載されている運転免許証の画像を送ったのですが大丈夫でした。一晩たってから、このコース修了書が送られてきました(実際は名前も記載されています)。無料期間でも修了書を発行してくれるようです。

続き:
Coursera: Deep Learning/ コース2、コース3終了

人気の投稿