grbl1.1+Arduino CNCシールドV3.5+bCNCを使用中。
BluetoothモジュールおよびbCNCのPendant機能でスマホからもワイヤレス操作可能。
その他、電子工作・プログラミング、機械学習などもやっています。
MacとUbuntuを使用。

CNCマシン全般について:
国内レーザー加工機と中国製レーザー加工機の比較
中国製レーザーダイオードについて
CNCミリングマシンとCNCルーターマシンいろいろ
その他:
利用例や付加機能など:
CNCルーター関係:



*CNCマシンの制作記録は2016/04/10〜の投稿に書いてあります。


ラベル レーザー の投稿を表示しています。 すべての投稿を表示
ラベル レーザー の投稿を表示しています。 すべての投稿を表示

2016年5月15日日曜日

CNC関連のソフト(まとめ)

CNCマシン制作の構想段階当初から、Macで使えるオープンソースのCNC関連のソフトをいろいろ探しています。数年前の流行が一段落したせいか、一見よさそうだけど開発が止まっているもの、便利そうだけどバグがあったりとなかなか見極めが難しそう。Macなので数はかなり限定されるのですが、いままで見て来たソフトのリスト。
Mac利用者からの見ての使いやすさで★〜★★★つけてます。初心者向けという感じで、必ずしも高機能がいいというわけではなく。すぐに使えるかどうかという基準で。それと今後の開発も期待できるかどうか。Linux系はMacでも使えることがあるけど、インストールが面倒だったり、Mac特有のバグがあったりするのであまり触っていません。Raspberry Piにインストールして使えば便利そう。

主には以下の5種類。

・2Dドローイングソフト:
  svg、dxfなどのフォーマットで出力できるもの

  Inkscape★★★
    イラストレータの代用(イラストレータのショートカットキーに変換可)。
    Extension(Plug-in)との組み合わせで充分使える。
    スナップ機能も細かく設定できるのでCADのように製図できる。
    Forumも充実しているし、2Dやレーザー加工はこれがメインで大体大丈夫だと思う。
    オフカット(Outset/Inset)機能でルーター加工パスもつくれる(使用例)。

・3Dモデリングソフト:
  stlなどの3Dフォーマットで出力できるもの

  Fusion360★★★
    3Dモデリング操作しやすい。
    無料版が最低1年間は使える。その後また更新?
    Gコードも生成可能。
    クラウドベースなので共同作業がやりやすい。
  Blender★★☆
    操作方法が独特で慣れるまで大変だけど、基本的に何でも作れる。
    Add-on(プラグイン)も豊富にある(シリアル通信なども可能)。
    BlendercamでGコード生成可能。
  ・SketchUp:★★★
    操作が直感的で扱いやすい。
    プラグイン「Export DXF or STL」をインストールすると便利。
    プラグイン「SketchUcam」をインストールすればGコード生成も可能。

・CAM/G Code Generator:
  図面データ(2Dデータ:svg、dxfなど、3Dデータ:stlなど)をGコードに変換してくれる

  Fusion360★★★(使用例
    3DモデリングしながらGコードも生成できる。3Dプリンターにもいいかも。
    商用ソフトでもあるので、かなり本格的(設定などが細かい)。
    レーザー加工用の機能がないのがちょっと残念。3D加工向きかも。
  Blendercam★★★(使用例
    Blenderと組み合わせて使えば便利。
    様々な3Dデータを読み込むことができるので、Gコード生成用としても使える。
    3D切削加工はほぼ可能。
  gcodetools(Inkscape Extension):★★☆(使用例
    やや開発が停滞しているようだけど、基本的なGコードは生成可能。
    最初は使い方に違和感を感じるけど慣れれば簡単。
  Laser Tool Plug-in(Inkscape Extension):★★★(使用例
    レーザー加工するならこのInkscapeとこのプラグインで簡単に設定できる。
    操作/設定がシンプルで使いやすい。
  ・Laserweb3/Laserweb4:★★★(使用例
    ブラウザ上のレーザー用アプリ。Laserweb4は単体アプリ化。
    Gコード生成とGコード送信もこれ一つで出来るので便利。
  Jscut★★★(使用例
    Webベースなのでブラウザ上で作業が可能。
    シンプルで使いやすい。オフカットなどのパスも生成可能。
    他のWebベースのGコードセンダーと組み合わせて使うと遠隔操作可能なので便利。
  ・PyCAM:★☆☆
    インストールが面倒、Macにはバグもあったり、しばらくは改善されなさそう。
  ・SketchUcam:★★★
    SketchUpのプラグイン。
    SketchUpと合わせて使うと便利。

・G Code Sender/Controller:
  Gコードを読み込んでCNCマシンへ送信したり手動入力制御したりするPC上のアプリ

  Universal-G-Code-Sender★★☆
    シンプルなので最初は使いやすいかも。
    grblとの相性がいいのかも。
    JavaベースなのでMacも充分使える。
    開発中の新バージョンに期待したいけどいつになるのか?
  GrblController★☆☆
    数年前までは使っている人もいたみたい。開発が止まっていそうで、今後あまり期待できない。
    基本的なことはできるけど、他に比べるとやはりいまいち。
  bCNC★★★(bCNCを使ってみたときの記事はこちらへ
    操作も比較的シンプル。
    dxf読み込み可能、基本的なCAM機能もある。
    Autolevel機能もあるので基板制作にも向いている。
    Pendant機能でWeb上からスマホなどで遠隔操作可能。
  LaserWeb/LaserWeb2/LaserWeb3/LaserWeb4★★★
    ブラウザ上の操作はシンプル。svg、dxf対応。Jscutと組み合わせると便利。
    Webベースなので遠隔操作可能(最近はWebベースが主流かも)。
    ブラウザ上でstlファイルを読み込むことができる。
    まだまだ開発が継続されているので今後も期待ができる。
  cheton/cnc★★☆
    これもWebベースでつかいやすそう。
    Webカメラでの監視、320x240 LCDディスプレイ対応の操作画面もある。
    Raspberry Piを用いて操作などすると便利そう。
    今でも頻繁に開発が進んでいそう。
  ・GRBLWeb:★★☆
    こちらもWebベースでRaspberry Piにインストールしてホストとして使うのかも。   
  ・Easel:★★☆
    X-CARVEやShapeoko(1or2)用のWebベース、CAD+CAM+GrblControllerソフト。
    X-CARVEやShapeoko(1or2)用だけれども使うことはできる。
    ただ、Machine選択でX-CARVE/Shapeoko(1or2)/Carveyしかないから戸惑うが、ウィンドウ下のAdvanced>> に進み、Advanced SettingsでMachine Inspectorを使えば大丈夫。
    細かい設定はないけれどもオールインワンなのですぐに使うにはいいかも。
    ステップバイステップで設定が誘導されるので初心者にはわかりやすい。   
  ・Mach3:☆☆☆
    MacなのでMach3とは無縁。

・G Code Interpreter:
  CNCマシンのマイコン(Arduinoなど)上のファームウェア
  Gコードからモーター制御してくれる
 ・Grbl v1.1:★★★(Grbl v0.9やv0.8はこちら
   Arduino Uno用。3軸制御まで。
 ・Grbl-Mega
   Arduino Mega2560用。
   以下のフォークされたバージョンでは4軸制御や3Dプリンター制御など可能。
   https://github.com/bdurbrow/grbl-Mega
   https://github.com/fschill/grbl-Mega
   https://github.com/HuubBuis/grbl-L-Mega
   https://github.com/fra589/grbl-Mega-5X
 ・GrblESP(ESP8266用Grbl)
   SPI通信により最大8軸。Wifi操作可能。
 ・Grbl_ESP32(ESP32用Grbl)
   基本3軸制御? Wifi/Bluetooth操作可能。
 ・Android対応ArduinoMega2560専用6軸ファームウェア
【EU Free VAT】CNC Part 4th Fourth A axis Rotary axis Dividing head K11-65mm 3 Jaw Manual Chuck with TailstockOriginal price: USD 233.37Now: USD 172.70

  ・LinuxCNC★★☆
    GrblもLinuxCNCに準じているようなので、すべてLinuxを使えばかなり便利そう。
    ただ、Linuxもやり始めると手間暇かかってしまう。
    少なくてもRaspberry PIを使ってできるかもしれない。
  ・TinyG★★☆
   Grblより強力そうだけど、それだけ値段も高いのでお手頃ではない。$165ドル。
   ファームウェアはAVR Studio(Win用)でアップデート。Mac用AVR Studioもあることはある。
  
  
まとめ:
基本的にはG Code InterpreterはGrblを使用。
2D加工するなら、Inkscape+Extension(gcodetoolやLaser Tool Plug-in)でGコードファイルを生成する。あるいは、InkscapeのsvgファイルをJscutで読み込んでGコードファイルとして出力。
特に2Dのレーザー加工の場合は、Inkscape+Laser Tool Plug-inで充分だと思う。
Gコードファイルを読み込んで実行するソフトは、Universal-G-Code-Senderがシンプルでわかりやすいかも。現在は、bCNCが便利なので(慣れたので)使っていますが。
3Dの場合は、モデリングは何のソフトでも構わないと思う。Sketchupなど使いやすいと思うソフトで。その3DデータをFusion360かBlendercamでGコードを生成する感じになると思う。

この際、Linuxにしてもいいのかもしれないけれど、手間暇かかるのでそこまではしないつもり。Macの環境でもそこそこつくりたい物はつくれそうだし、とりあえずあるものを利用するだけでも充分だと思う。

ただ今後はRaspberry Pi3を使い、wifi経由でWebベースのLaserWeb2、cheton/cnc、Jscutを使うのがよさそう。遠隔操作やカメラ監視なども可能になるし、ワイヤレスでどこででも作業が出来るというのがいい。スマホやタブレットで操作もできるようになるので。
個人的には、LaserWeb2に期待したい感じ。現在はstlを読み込めるけど、スケール変換などがまだできない。今後のロードマップを見ると、3Dにも力入れようとしているし、まだまだ発展しそう。以下のような画面。

追記:
普段は、G Code SenderとしてbCNCをつかっていますが、bCNCにはPendantという機能(ネットワークを使ってWeb上で操作する)があり、先ほどつかってみたらタブレット(ブラウザ上から)でリモートコントロールできました。

これ↑が、Pendant機能をつかったタブレットのブラウザ上の画面です。
いままで通りに、CNCマシン(Arduinoボード)とMacBookをUSB接続し、bCNCを立ち上げてPendant開始ボタンを押すと機能がONになります(以下)。

ホストとなるMacBook上でもブラウザが自動的に立ち上がって操作画面が出てきます。アドレスに「http://localhost:8080」とでているはずなので、ローカルネットワーク内の他のコンピュータやスマホなどからもアクセスできるはずです。
持っているタブレットでは「localhost:8080」ではアクセスできなかったので、数字でプライベートIPアドレス「192.168.3.3:8080」(MacBookのプライベートIPアドレスとポート)を入れてみたら表示できました。
つまり、MacBookはCNCマシン本体脇に、そしてタブレットやスマホを持ちながらZ軸に近寄って調整などが可能というわけです。ポートマッピングも使えば、外出先からも操作可能だと思います。
bCNCは、いろいろな機能があってかなり便利そうです。

関連:
G Code Sender(bCNCなど)

CNCマシン:Fusion360も試してみました

前回、Blendercamが使えるということがある程度分かったので、今回はいよいよFusion360を試してみます。ほかにもPyCAMやLinuxCNCも見てみましたが、Mac利用者にとってはいまいち開発があまり進んでいないようで、まだまだバグとかもありそうなので見送ることに。
というか、大体の人がFusion360に流れて行っているのではないでしょうか?


Fusion360のダウンロード:
ということで、ある程度Fusion360の動画で使い勝手を見てみて、早速ダウンロードしてみました。
画面右上のほうには、とりあえずトライアル30日間無料というのがあるのですが、そこをクリックすると、
こんな↑画面が出て来て、本格的に購入するか、教育バージョンで3年間無料か、非営利か年間$100K以下のビジネスのホビーユーザーで1年間無料かというのが、次に選べるようになっています。まだ30日無料トライアルにしたままですが、いずれにせよ最低でも1年間は無料になるという感じです。

モデリングは使いやすい:
モデリングについては動画でも見てみましたが、けっこう使いやすい直感的なインターフェイスという感じです。Blenderのような癖のある感じではないのですぐに覚えられそうです。
とりあえず、チュートリアルを見ながらやってみましたが、モデリングは何とかなりそうなので、すぐにGコード生成の仕方をいろいろいじってみました。
かなり細かい設定やいろんな加工の仕方があるので、情報過多で難しそうですが、普段使うものは限られてくると思うので、ひとつずつ設定していけばなんとかなりそうです。


レーザー加工はどうやる?:
以下の動画も見てみましたが、かなり手慣れた方法でモデリングしていました。

部材の厚みや間隔などを一旦変数化して、あとから数値入力によって簡単に編集し直す方法を使っています。たしかにこれは製品などつくる上では便利そうです(個人的にはあまり使わないと思うけど)。実はこの動画を見たのは、レーザー加工の手順を知る理由でしたが、最終的には部品のサーフェイスをdxfで出力保存して、あとは何かでやってくれというものでした。他の動画でもレーザー加工に関しては同じような感じでした。
2次元のレーザー加工の場合は、Fusion360を使う必要がないという感じ。おそらく手順としては、
Fusion360で3Dモデリング→一部をdxfで出力→Inkscape+Laser Tool Plug-inでGコード生成→bCNC
という手順になりそう。bCNCでdxfファイルを直接読み込むことはできるけど、レーザー用にスピンドルONや出力値(M3 S=1000など)のGコードを編集しなければいけないので、結局上記のような経路となってしまいます。
Fusion360なら全部ひとつのソフトでできるのかと思ったら案外そうでもないです。3Dプリンター用のボタンはあるので、3Dミリングか3Dプリンター用という感じでしょうか。


3Dミリング加工:
仕方ないのでミリング加工についてもいじってみました。チュートリアルもやってみましたが、手順通りに進めるとすぐに終わってしまうので、前回Blendercamでも使った3Dモデルでやってみました。
このデータはstlフォーマットです。直接ソフトでは読み込むという機能がないかわりに、一旦クラウドへアップロードしてから新規に開くという手順。基本的にクラウドで共有しながら共同でプロジェクトを開発していくみたいな感じになっているようです。
またこの凹凸がある表面を3次元的に削るというデータをつくってみます。
ネットにチュートリアルのサイトや動画もあるので、ここでは手順は省きますが、とりあえずBlendercamもそうでしたが、各項目の設定を入力していくだけです。加工の仕方や設定の種類はさすがに商用ソフトでもあるのでFusion360はすごいです。その分設定が細かすぎてすぐには全部を把握できない感じ。何回かエラーがでてきて、パスが表示されないこともありましたが、エラー内容を見ながら、ここかな?という感じで訂正していき、なんとかパス生成しました。


加工パス生成:
しかし、できあがった加工パス超高密度。エラーはでなかったけれども、これでは何時間かかるのかわかりません。
そして、出来上がったGコードをbCNCへ持っていくと、
こちらも真っ黒。おそらく加工に10時間以上かかるパス。
まあ、いちおう手順としては分かったので、なんとななりそうです。


Fusion360の印象:
チームで何かプロジェクトをやるときには便利そうです。プロのプロダクトデザイン用のソフトって感じです。ミリング機能に関しては本格的で金属など削るにはいいと思います。3Dモデリングも使いやすそうです。
個人的には、Fusion360だけですべて出来るのかと思っていたら(Gコードセンダーにもなるのかと思っていた)そういうわけはなかったです。いわゆるCAD、CAMソフトという感じでした。3D切削加工するときは使うかもしれませんが、シンプルな2D加工ならわざわざ使う必要もないかも。特にレーザー加工なら、Inkscape+Laser Tool Plug-inで充分かもしれません。


Fusion360操作ガイド CAM・切削加工編 1 2019年版―次世代クラウドベース3DCAD/CAM
三谷 大暁
カットシステム
売り上げランキング: 27,799

2016年5月12日木曜日

CNCマシン:レーザー焦点距離測定実験(その2)

以前は、レンズ先から素材までの距離10mm〜100mm(5mm間隔で)焦点距離測定実験を行いました。その結果50mmくらいが焦点距離とわかったのですが、今回は50mm付近をさらに細かく測定したいと思います。
以下が前回の結果。距離50mmでの線が最もシャープ。

前回の結果から、50mm付近を0.2mm間隔で照射してみます。前回の結果を見ると、45mmと55mmだと、45mmのほうがややシャープなので、おそらく45mm〜50mmの間に最適な焦点距離があると思われます。
上画像は、48.2mm〜52.0mmまでの照射実験です。レーザーモジュールを取り外したりしたので前回の実験と多少の誤差があるかもしれません。この結果では、50mmというよりも左端の48.2mmがシャープに見えます。なので、48.2mm以下をさらに細かく照射実験してみました。

上画像は、46.1mm〜48.0mmまでを0.1mm間隔で照射した結果です。左端が46.1mm、中央に47と書いてあるところが47.0mm、右端48と書いてあるところが48.0mmです。
これを見る限り左にいけばいくほど少しずつ線が太くなっています。おそらく47.5mmあたりが焦点の中心ではないでしょうか。肉眼で見る限りは、47.0mmから48.0mmの間であれば、どれも同じように見えます。ということから、47〜48mmあたりを焦点距離にすればいいのかもしれません。焦点深度が1mmくらいあると考えてもいいかもしれません。実際フェルトや紙(多少波打っている素材)を切る場合なら、2mm前後は誤差があってもそれほど問題にはならなさそうです。

前回制作した黒いレーザーシールド(代用品)を取り付けた場合、レンズチューブ先端からレーザーシールドの底面までは45mmにセットしてあるため、以下のように素材との間に2mm厚のABS樹脂板(レーザーシールドと同じ材料)を差し込めば、だいたい焦点距離になるという感じです。

そろそろ実制作のためのツールとしてCNCマシンが使えそうです。まずはレーザーをつかってフェルト生地を切ろうと思っているので、その作業に合わせたセッティングという感じです。


実験続き:
焦点距離が分かったので、ためしに薄い合板を切ってみることにしました。5.5Wのレーザーダイオードでどのくらい切れるのか?とは言っても、個人的には木材をレーザーカットはしないと思うけれども、一応参考のために。
合板は厚さ2.2mm。Gコードを手入力していたので、最初と最後の部分が焦げています。5.5Wを100%の出力で、1パスで切っています
大きい円が直径20mm、小さいほうが10mm。
フィード(mm/min:切断時のスピード)が、左から100、70、100、50です。
そして、裏側を見ると、以下のような感じ。

まず20mmの円をフィード100でやってみましたが、大体切れていましたが、少しだけ切れていない部分があったため、裏からカッターで切り落としました。それなら少し遅くしてフィード70なら完全に切れるかな?と思ってやってみましたが、裏からみると似たような感じで、大体は切れているのですが、あともう少しという感じ。
10mmの小さい円のほうもそんな感じです。小さい円の上側がフィード100、下がフィード50。もちろんフィード50のほうがゆっくり動くので切れていそうですが、表からみるとかなり焦げています。おそらく、これ以上スピードを落としてゆっくり切ると完全に切り落とすことができるかもしれませんが、かなり焦げてしまって、切断線も太くなってしまいます。単純にスピードを落としてゆっくり切ればいいというわけでもなさそうです。

まとめ:
焦点測定実験からも、1〜2mmの焦点深度があるために、焦点をどこに合わせるかで切れ方も変わってくると思います。今回の場合は合板が2.2mmで、焦点は合板上面に合わせてしまいました。
できれば焦点は合板の厚みの中間あたり、つまり合板上面より1mm程度下げたところを狙うとよかったのかもしれません。焦点から離れるほど線も太くなって焦げが目立つし、さらには切れ味も悪くなります。
それから、1パスで一気に切らないで、焦点を下げながら2パス、3パスでフィードも速めで切った方がきれいにきれそうです(次回試してみます)。フィード100でも90%以上切れているので、フィード200で、2パス(1周目は焦点を材料上面から0.5mm下、2周目は1.5mm下で)とかがいいかもしれません。焦点深度を超える厚みのある材料の場合は何回かに分けて切った方がよさそうです。このレーザーダイオードの場合なら、焦点深度を1mmと仮定すれば、1パスで切るには1mm厚までで、それ以上の厚みの場合は、1mmずつZ軸も下げながら3mmなら3パスという感じで切った方がいいかもしれない。
そうやって切っていけば、5mmくらいは簡単に切れそうです。がんばれば10mmも10パスくらいできれるのかもしれませんが、その場合ルーターで切ったほうがよさそう。


さらに実験:
先ほど書いたように1パスで切らないで2パス、3パスでの切断実験をしてみました。

すべて直径10mm、厚さ2.2mmの合板です。2パス切断は、1周目焦点距離-0.5mm、2周目焦点距離-1.5mmで行いました。左端のを除いては、すべて2パスでフィード(切断速度)を100、150、200に変えただけです。右から2番目の2パスF100は完全に抜け落ちてました。
裏返すと以下。
右から2個目が2パスでフィード200のもの。やはり一番速いせいか完全には切れていません。なので、フィード200のままで3パスにしたものが右端です。0.8mmずつ下げたものです。ほぼ切れています。裏面はきれいなほうですが、表面がやや焦げが多いです。
左から2番目がフィード100で、完全に抜け落ちていますが、その分少し焦げが多いので、ここまでフィード落とさなくてもいいという感じ。左端がフィード150で大体切れています。この程度がちょうどいいのかもしれませんが、やや裏面も焦げている感じです。

4つを比較すると、両端のどちらかがよさそうという感じですが、2パスF150のほうがいいかもしれません。パスの回数が増えると、表面がけっこう焦げてしまいますね。ということから、適度なフィードでパス数もあまり増えないようにということですが、いろいろ試してみないと分からないというのが結論です。

2016年5月11日水曜日

CNCマシン:ハニカムパネル(代用品)

ハニカムパネルの代用品として、アルミC型チャンネルを敷き詰めればいいかなと考えていましたが、スクラップをさがしてみたらアルミLアングルの端材が何本かあったので、以下のように敷き詰めてみました。左にあるのがA4サイズコピー紙です。

Lアングルは25x25mm t=2mmです。使えそうな端材はこれで全部ですが、だいたいA4サイズならカバーできます。
これなら下の合板の台座も焦げなくていいかもしれません。多少大きめのサイズなら以下のように少し間隔あけて並べるとか。すこし焦げる部分がでてくるけど。
これ↑は、A3サイズコピー紙です。ぎりぎり置ける感じ。
そして使わないときは以下のようにコンパクトにまとめておける点がいいかもしれません。
この程度のサイズのものなら、しばらくはこんな感じで使ってみます。
ひとつ問題なのは、先ほどのように縦に複数並べると貫通したレーザー光が縦方向(手前)に漏れてくるということ。そういう意味では、ハニカムパネルやグリッド状パネルなら縦横どちらにも漏れない仕組みになっていて、より安全ということ。ただ接地面積を減らして持ち上げればいいと思っていたけど、反射光が拡散しないようにするためには、そんな工夫も必要かもしれません。

ということで、以下のようにしてみればまだましかも。
手前に漏れてくるレーザー光をブロックするLアングルを配置。
これなら、先ほどより安全。ただ並べているだけなので、位置は適当に調整可能です。
あとで照射実験してみようと思います。

最終的にはA1サイズをカバーできるくらいの大きさが欲しいのですが、LアングルやCチャンネル材を敷き詰めると材料費だけで5000円はかかりそうです。
以前見つけたAliExpressの以下のハニカムパネル(13,483円)だと、サイズのわりにそんなに高くないけど、これを買うならブラシレスモーターのスピンドル(約18000円)を買う方が先かなとも考えてしまいます。

このハニカムパネルは確かにいいけど、使わないとき邪魔だし、しばらくはLアングルかCチャンネル材の代用品で行こうと思います。

2016年5月10日火曜日

CNCマシン:レーザーシールド(代用品)制作

まだレーザー遮光アクリルを入手していないので(高価なので)、その代用品をつくろうと思います。探したらABS樹脂2mm厚があったのでそれを材料にボックス状のシールドをレーザーの下部につけようと思います。レーザーモジュールの断面が32.5mm角なので単純に内寸33mm角チューブをABS樹脂でつくる感じです。


こんな感じで4枚の板を張り合わせてネジで止める部分に溝をつけるだけ。今回もまたすべて手仕事です。ABS板はプロクソンサーキュラーソーで切断。溝は模型用ノコギリ。あとはサンドペーパーで調整。この程度の作業だとCNCマシンでつくるとかえって時間がかかってしまいます。
そして、以下のようにすっぽりはめ込みます。

このままだとレーザー光が透けてしまうので、後から黒い塗装をしようと思います。
中に煙などがこもってしまいそうですが、レーザーモジュールの上部にファンがついており、黒いヒートシンク内部には通気孔が通っているので、煙を吸い上げるような感じで排気してくれます。
このままでもいいのかもしれませんが、いちおう以下のようにさらにレーザー照射面付近に窓のような物をつけてみました。このほうが反射光が外に出ないかなと思ってつけてみましたがどうでしょう?
直径20mmの穴が開いています。ここからレーザー光が出て来て素材に照射します。素材とこのシールドとの距離が短いほどレーザー光は外へ漏れないのですが、おそらく素材と5mm程度間隔をあけようと思います。
サンドペーパーで継ぎ目を削ったのでけっこうカチッとした感じになりました。あとは塗装するだけです。
内部と外部に塗装すれば、レーザー光は透けないでしょう。もしそれでも透けるのであれば、表面にアルミホイルなど貼ろうと思います。


前回のレーザー実験:
前回の写真を見ると、レーザー光が素材に当たっている部分が一番まぶしい感じです(以下、前回の画像)。
けっこう広範囲に漏れてきているのが分かります。合板の上の線が5mm間隔なので30mm四方はかなり強力な反射光、そしてだいたい50mm四方にまで広がっています。これがどのくらい小さくなるか??
素材が合板なら表面がフラットなのでシールドを3mmくらいまで接近させることができそうですが、フェルトなどの柔らかい素材だと多少波打っているので、5mmはあけないといけない。紙なども大きいと丸まってしまったりするし、素材をフラットに固定するのはけっこう大変です。


ハニカムパネル:
それとそのうちハニカムパネルも買わないといけないかも。画鋲をならべて自作している人もいたけど、ハニカムパネルは高価なので、そんな感じでもいいのかもしれない。サッシ用のコの字型アルミチャンネル(等間隔でたくさん並べる)も安価でいいかもしれない。
またもやAliExpressで探すと(以下)、
こんな感じのサイズで13,483円(送料込み)。A1サイズがすっぽり入るのでよさそう。サイズに対して思ったより高くないけど、やっぱり高い。というか、こうやって少しずつ環境を整えて行こうとするとけっこうお金がかかる。仕方ないのかもしれないけど。


レーザーシールド(代用品)完成:
つや消し黒を内部と外部にスプレーして完成したので早速実験してみます。5度塗りくらいしました。


レーザーシールド実験開始:
こんな感じでCNCマシンにセットします。以下。
ぎりぎりまで下げておきます。
それではレーザースイッチオン。M03 S1000でレーザー(5.5W)は最大出力。レンズ先からの焦点距離は約50mmですが、合板と今回のシールドの隙間は約5mmあります。
Gコード直接入力、レーザー出力100%、相対座標で現在地を12時の位置にして時計回りに半径20mmの円を300mm/minの速度で描くというプログラムです。
M03 S1000 G91 G2 X0 Y0 I0 J-20 F300

 前回よりは漏れていません。一応効果あります。塗装した黒いボディからも光は透けていません。上のほうからみるとこうですが、ちょっと下がって見てみると(以下)、レーザーが素材に当たっている部分が見えるためか反射が強く見えます。


 ゴーグルをつけて写真を撮っているので、そのときはどんな感じに見えるかはわかりません。
写真の撮り方や露出によっても写り方が違うので、これ↑なんかはかなり反射光がはみでているように見えます。


かなり上のほうから見れば、こんな↑感じ。少しだけ周囲にはみ出ているくらい。周囲も明るいせいか、レーザーの漏れてくる光もあまり目立ちません。
直接素材にレーザー光が当たっている部分が見えなければ、けっこう大丈夫そうです。つまり、あまり真横から見ないほうがいいということです。4面囲うというよりも、照射スポットが隠れるようにするといいのかもしれません。今回このボックス型シールドの底面に20mmの穴をあけましたが、あまり意味はないかも。それよりも、底面をはみ出るくらい大きくして全体的に隠すようにすればいいのかもしれません。ちなみに合板上の円は直径40mmなので、底面に直径60mmの円板をつければほとんど青い光が見えなくなるはずです。

結論として、シールドをつけないよりはつけたほうが断然いいですね。ただ、照射している部分が見えないので、4面あるうちの前面だけでもレーザー遮光アクリルにしたいです。いずれにせよ、これで前よりは怖がらずに作業できそうです。

追記:
その後レーザーシールドを改良したバージョンはこちら

2016年5月5日木曜日

CNCマシン:中国製レーザーモジュールについて(まとめ)

レーザーの実験も終わったところなので、いままでのことをまとめておきます。

今回の自作CNCマシンでは、5.5W、12Vのレーザーモジュール(レーザーダイオード)を使っています。この手のレーザー加工機用のモジュールはEbayでも入手できますが、AliExpressで入手するのがほとんどでしょう。AliExpress内で「5.5w laser」や「5500mw laser」で検索すれば出てきます。
見た目はこんな感じのもので、レーザーモジュール本体、ドライバ基板(中央)、ACアダプターの3点セットになっています。もちろんマニュアルなし。Air Mail便で2週間前後で届きます。

AliExpress.com Product - 5.5w blue laser module high power focusing laser engraving and cutting TTL module 500mw/ 2500mw/5500mw laser tube+ gogglesAliExpress.com Product - 5500MW laser engraving machine 5W high power laser modules focusing head point wavelength 450m12v
ちなみに、これ↑は、5500mwのレーザーモジュール(6,757円)。たまに安いのがあります。

注意事項として:
購入する際も、一応内容のチェックをしたほうがいいです(メールやチャットで)。ドライバ基板はついてくるのか?ACアダプターは何V対応なのか?焦点距離はアジャスタブルかもしれないけど、大体どのくらいなのか?もし壊れていた場合返却できるのか?など。
マニュアルはないので、すぐに接続して試す前に、それぞれをテスターなどでチェックしたほうがいいです。ACアダプターの極性や電圧をチェックしてから、ドライバ基板に接続(このときまだレーザーモジュール本体はつながないほうがいいかも)。当然レーザー用ゴーグルも必要。ドライバ基板の各端子の極性や出力電圧チェック。配線の色が逆になっていることもあるので、それも確認するなど。レーザーを接続する場合も、異臭や異音を感じたら、すぐに電源OFFできるように身構えておく。燃えやすいものが近くにないかどうか。使用前と使用後の異常を確かめるためにも、最初にカメラで撮影しておくといいと思います。

出力と値段:
この種類、メーカーはどこのものなのか分かりませんが、0.3W、0.5W、1W、2W、2.5W、3W、4W、5W、5.5W、8W、10W、12W、15W、17W、20Wのバリエーションがあるようです。5.5Wで1万円前後、20Wで2万円前後という感じでしょうか。ショップによっても値段がかなり違いますが、画像は同じものを転用しています。購入するときはメールやチャットで内容を確認したほうがいいでしょう。


AliExpress.com Product - Blue Laser 15W Laser Engraving Machine Focusable High Power Laser Module 450nm TTL/Analog with Power Supply CNC Engraver Cutterダイオードレーザーではかなり強力な15Wレーザーモジュール。18,509円(送料込み)

17Wで33,576円(送料込み)。

また最近(2019年)では、以下のようなセットもありました。以前に比べるとかなり安くなってきました。

AliExpress.com Product - Powerful 20W 450nm blue laser module DIY laser head for Master Series CNC laser engraving machine Accessory with Wrench20W ダイオードレーザーCNCマシン、21,140円(送料込み)


レーザー加工機としてどのくらいのW数がいいか?:
国内のSmart DIYsの「FABOOL Laser mini」は1.6Wのようで、3Wにも拡張できるようです。おそらく、一度手にするともっと出力数の高いものが欲しくなってくると思います。1.6Wで柔らかい木材2mm切断できるらしいです。5.5Wで4〜5mmくらいでしょうか。アクリル板も切りたいと思うかもしれませんが、この手のダイオードレーザーだと透明アクリルは光を透過してしまって切れないようです(黒いアクリルなら可能)。もし分厚いアクリルも切りたいのであれば、Smart DIYsの「Smart Laser CO2」などの40Wクラスになってしまうでしょう。透明アクリルでも10mmまで切れるようです。ただし248,000円(税抜き)とかなり高額になってしまいます。中国製の40W/CO2レーザーであれば8万円前後で買えますが、電源やソフトなど改良する必要があるかもしれません。

AliExpress.com Product - 40w co2 3020 laser engraving machine,3020 laser cutting machine,engrave size 30*20cm support CorelDRAW output
中国製CO2レーザー40Wなら、こんな感じ↑(約68000円/送料込み)。これなら透明アクリルも切れるはずです。


ルーター、ミリングマシンという選択:
今回CNCマシンを制作するにあたりそんなことを考えましたが、やはり20万円以上も費やすのは高いかなと。分厚いアクリルなどを切るならルーターやミリングマシンで切った方がいいんじゃないかと。そうすれば、アルミなどの金属加工もできるし、レーザーとミリングの使い分けがいいのではないかと。
レーザー加工機の場合は、基本的にXY軸だけで済むし切断する材料から切削抵抗も受けないので、それほど剛性のある構造にしなくてもいいのですが、ルーター/ミリングマシンの場合は剛性をあげないと切削抵抗に耐えられなくなってしまいます。なので、レーザー加工機をルーターマシンに転用することはできませんが、その逆は可能なので、CNCルーターマシンをつくるという前提のほうがよさそうです。
もし自作しないのであれば、「Shapeoko3」や「X-CARVE」のような$1000くらいのXYZ軸の3軸CNCマシンを購入して、そのヘッドにレーザーモジュールを買い足せば15万円くらいで両方使えるようになると思います。当然自作すれば10万円以下で両方が可能になるはずです。
ミリングマシンであれば、基板制作も可能になるというメリットもあります。
ということから、レーザーの場合は例え5万円前後の10Wダイオードレーザーを装備したとしても、値段の割にはあまり大した物は切れないので、あくまで薄い素材を切るか、切るというよりも表面刻印加工用として考えたほうがいいかもしれません。どうしても分厚いアクリルなどをレーザーできれいに切りたいというのならCO2レーザーになってしまうと思います。

レーザー加工機を自作する場合:
ミリングは必要なく、レーザーだけでいいのであれば、3万円もあれば作業エリア500mm角くらいのものをつくることができると思います。何Wのレーザーにするかでコストが変わるので、レーザーモジュールを除いた部分(XY軸の2軸CNCマシン)だけであれば2万円くらいでつくれると思います。
必要なのは:
モーター:ステッピングモーターNEMA17クラス2個
送り機構:2GTタイミングベルト+タイミングプーリー
直動機構(構造フレームも兼ねる):V-slot Rail+solid V-wheel
制御:Arduino+ステッピングモータードライバ
その他:配線材料、ネジ類、ブラケット、リミットスイッチなど
しかし、AliExpressで2万円くらいで2Wレーザーカッターキットが買えるので、それをベースに改造したほうが早いかもしれません。Arduinoで動くものが多いので、Arduinoが使えるのであれば特に問題ないと思います。付随のソフトに問題があるのであれば、オープンソースのgrblやUniversal G-Code Senderを使えばいいと思います。自作についてはソフトとハードともに、Shapeoko wikiReprap wikiなどから充分情報が手に入ると思います。

AliExpress.com Product - benbox 2000mw laser engraving machine cutting maching laser engraver big working area 65*50cm support laser power adjust2Wレーザー加工機、21,671円(送料込み)

ダイオードレーザーモジュールの構成:
CO2レーザーはあきらめるとして(かわりにミリング加工する)、それでもレーザーでしか切ることができない柔らかい素材や刻印加工もあるので、一概にダイオードレーザが使い物にならないというわけでもありません。レーザーモジュールを買うなら、上画像にあるようにTTL端子のついたドライバが付属しているか確認したほうがいいと思います。

以下はダイオードレーザー用のTTLドライバ単品。

AliExpress.com Product - TTL driver board,laser driver board 2879円(送料込み)



こんな感じで↑、ドライバ基板にTTL端子がついています。ここにArduinoなどのマイコンをつなげばレーザーの可変出力を可能にします。何もつながなければ、手動によるON/OFF制御になってしまいます(具体的な配線についてはこちらへ)。

ドライバ基板は全体的にはこんな感じになっています。大きさは幅50mm、奥行き30mm、高さ25mm程度。右上が先ほどのTTL端子+-、その下の赤黒ケーブルがついている端子が電源DC12V端子、左側にLD+-端子(レーザー本体につなぐ)、その下がFAN+-端子(レーザー本体につけるDC12V用クーリングファン)。LD端子+からは約5.5Vが出ていました。

左に見えるのが付属のACアダプター、INPUT:AC100〜240V 50/60Hz DC12V 2A。レーザー本体は、32.5x32.5x65mmくらいの大きさです。先端と反対部分にファンがついており、ケーブルも別です。回路も含めてレーザー本体は、ほとんどが黒塗りのアルミ製ヒートシンクで囲われており、中心に円筒状(径18mm)になって入っています。
この状態で電源をつなげばすぐにレーザーは使えますが、いきなり最大出力がでるので注意しないといけません。
そのために、レーザー防護用ゴーグルが必要になります。

レーザー防護対策:
レーザーの安全基準(オムロン)を見てみると、大抵のレーザ加工機の場合は最も危険なクラス4に入ると思います。なので一度読んでおくといいと思います。
レーザ用ゴーグルなどがないと目に損傷を与えてしまうので、もし複数の人数で作業している場合は全員着用する必要があると思います。できるだけ見ないように注意しても、予期せぬ反射光が目に入って来たり、ゴーグルを着用していても頭をちょっと動かした際にゴーグルと顔との隙間から光が入ってくることもあります。当然、何も防護していない他の人やペット類がいるような場所での作業は控えた方がいいと思います。
個人的な経験ですが、レーザーの焦点実験などしていると、レーザーゴーグルをつけているにもかかわらず、なんとなく目が疲れたような感じになります。顔もなんとなく日焼けしたような感触を得ます。それだけレーザーの反射光を顔に浴びているということだと思います。

国内の防護ゴーグルを購入しようとすると2〜3万円くらいします。

リケン レーザー保護メガネCO2レーザー RSX4CO2
理研オプテック
定価 ¥21,600
Amazonで詳細を見る

安いものであれば、

BOSCH(ボッシュ) レーザーメガネ BL-GLASS
ボッシュ(BOSCH)
売り上げランキング: 105,133

ボッシュ製らしいですが1620円。

安いですが、これもきっと中国製だと思います。なのでAliExpressで同じようなものを探すと、
これ↑なんかは、一個155円(送料無料)
いちおう使っているレーザーの波長をチェックして、それに対応するものを選ぶ必要があります。
レーザーの種類、出力数によっては、品質の高いものを選んだほうがいいと思います。それと、安いものだと完全にレーザーを遮光するというわけでもないので、レーザーゴーグルを装着したからと言って直接レーザー光を見ないようにしたほうがいいと思います。遮光というよりは、あくまで軽減ということなので。

前述のレーザーモジュールの場合450nmなのでその波長をカバーしているかどうか?それと安全性の基準となるOD値(Optical Density:光学濃度)が書いてあるはずなので、それもチェック。書いてないようなものは買わない方がいいと思います。
この表↑を見るとOD値が大きいほど安全という感じです。

それと、ゴーグル以外にもレーザー遮光アクリル/シートなどあるといいかもしれません。ただしこれも結構高いです。
AliExpressで安く売ってるかと思うと、そうでもありません。
これ↑は、Laser Safety Windowという厚さ5mmのアクリル板ですが、50x50mmサイズで2203円(送料込み)もします。

他には、アメリカのJ-Tech Photonicsにある以下のもの。
12インチ角(約300mm角)で$16.99しかしないのですが、送料が$63.61もするので、8000円くらい。このサイトに利用例がありますが、以下のようにするだけでもかなり目に入ってくる量は減ると思います。

使っているレーザーの焦点距離が素材まで50mm程度なので、できればレーザーモジュール下の部分を箱状に囲ってしまうともっといいはず。そうすれば、いちいち怖がらずにどんどん作業できそうです。

追記:
最終的には以下のように、安価なレーザー用ゴーグルを材料にシールドを自作しました(そのときの内容はこちら)。


レーザー用ソフトなど:
Inkscapeで描画しGコードを生成するには、
Laserweb3(Grbl1.1対応のブラウザベースGコード生成+送信アプリ)
があります。
特にLaser Tool Plug-inは、Inkscapeのプラグインであり、レーザー加工機用につくられているのでInkscapeで描画しつつ、それをすぐにGコード変換できるので使いやすいと思います。あるいは、Laserweb3ならInkscapeで描いた図面等を取り込んだ後、Gコード生成とGコード送信が一つのアプリで可能なので便利です。
レーザードライバのTTL端子への出力値や刻印加工の設定も簡単にできそうです。
Arduino+grbl0.9(あるいは1.1)を使っている場合は出力値0〜1000の値を入力します。1000で100%、500で50%、0で0%。

レーザーの焦点距離:
きちんとした製品であれば、マニュアルなどに焦点距離について書いてあるはずですが、上記の中国製レーザーモジュールの場合、当然マニュアルなんかはついてきません。なので自力で探し出すことになります。もしくは買ったショップに問い合わせてみてもいいかもしれませんが、商品を売ってはいるものの、その商品の細かな内容についてまで知っているとは限りません。
設定が悪いとせっかく高出力のレーザーであっても半分の能力しか発揮できないということもあり得ます。まあ仕方ないですが、それも経験や学習から向上させていくしかありません。

焦点を合わせるには2カ所調整する必要がありそうです。
まず、先端部分にレンズが内蔵されたアルミチューブがあります。これを回すと前後に位置を調整できます。

こんな感じで飛び出してきます。中のレーザーダイオードからレンズまでの距離を合わせる必要がありそうです。
まず、レンズチューブ先端と素材を50mmくらい離して照射してみて、一番光点が小さくなるように調整します。もちろんゴーグルは必須です。できれば、出力を下げてやったほうがいいのですが。
ただ問題は、このレンズチューブを緩めると(飛び出させると)、ネジ山のあそびが多すぎるせいか、すこしぐらぐらしてしまいます。締め付けるために薄型ナットを取り付ける方法もあるのですが、M9ピッチ0.5mmという特殊なナットが必要になります。そのようなもので管用ナットというのがあるのですが、国内だとM9ピッチ0.75mmが主流のようでなかなか見つけるのが大変です。それならそのナット(締め付ける部品)すら自作したほうがいいかというと、


いちおうAmazonでもM9ピッチ0.5mm(1300円+送料880円)のタップは購入できます。しかし、たかがナット一個のために2180円も費やすのももったいないというのであれば、

こんな感じで、プラスチックの板などに径8.5mmくらいの穴をあけてから、アルミのレンズチューブ根元についているネジ山を利用して、タッピングしてしまうという手があります。そうすればプラスチックの板がレンズチューブを締め付けるナットになってくれるというわけです。これでレンズチューブを飛び出させてもぐらぐらしなくなります。
こんな方法で、内部のレーザーダイオードとレンズの距離を合わせたら、つぎは素材との距離を計測します。およそ50mmくらいだと思うのですが、レーザーの種類やレンズの種類によっても異なるかもしれないので、いちおう距離10mmから100mmくらいまでを5mm間隔くらいで照射実験します。

これが実験結果ですが、下のほうに手書きしてある数字が距離(mm)です。つまり左側10mmから徐々に5mmずつ離していって照射してみたということです。これを見ると分かるように、距離50mmが一番線がシャープになっています。50mmから離れるほど、線が太くなり、さらには線が薄くなっていくのが分かるかと思います。これは5mm間隔でやっていますが、さらに今度は45mmから55mmの間を0.5mm間隔などで実験すれば、さらにもっと正確な焦点距離がわかるはずです。という感じで焦点距離を探すように調べてみるといいと思います。

追記:
その後、0.1mm単位で焦点距離を調べてみると46.5〜48.5mmくらいでした。肉眼で見る限りでは約2mm前後のずれがあってもシャープさが鈍る感じではありませんでした。2mmの焦点深度があるような感じです。

いちおう以下に、10mmから100mmまで(5mm間隔、合計20本)の実験につかったGコードを書いておきます。
Arduino UNO+CNC ShieldV3.5+grbl0.9jで、PWM機能を使ってレーザードライバのTTL端子へつないで出力調整できるようにしてあります。尚、実験レポートは前回の投稿に書いてあります。

M05 S0
G90
G21

G1 F600
G1  X10 Y60 Z10
G4 P0 
M03 S1000
G4 P0
G1 F400.000000
G1  X10 Y10 Z10
G4 P0 
M05 S0

G1 F600
G1  X15 Y60 Z15
G4 P0 
M03 S1000
G4 P0
G1 F400.000000
G1  X15 Y10 Z15
G4 P0 
M05 S0

G1 F600
G1  X20 Y60 Z20
G4 P0 
M03 S1000
G4 P0
G1 F400.000000
G1  X20 Y10 Z20
G4 P0 
M05 S0

G1 F600
G1  X25 Y60 Z25
G4 P0 
M03 S1000
G4 P0
G1 F400.000000
G1  X25 Y10 Z25
G4 P0 
M05 S0

G1 F600
G1  X30 Y60 Z30
G4 P0 
M03 S1000
G4 P0
G1 F400.000000
G1  X30 Y10 Z30
G4 P0 
M05 S0

G1 F600
G1  X35 Y60 Z35
G4 P0 
M03 S1000
G4 P0
G1 F400.000000
G1  X35 Y10 Z35
G4 P0 
M05 S0

G1 F600
G1  X40 Y60 Z40
G4 P0 
M03 S1000
G4 P0
G1 F400.000000
G1  X40 Y10 Z40
G4 P0 
M05 S0

G1 F600
G1  X45 Y60 Z45
G4 P0 
M03 S1000
G4 P0
G1 F400.000000
G1  X45 Y10 Z45
G4 P0 
M05 S0

G1 F600
G1  X50 Y60 Z50
G4 P0 
M03 S1000
G4 P0
G1 F400.000000
G1  X50 Y10 Z50
G4 P0 
M05 S0

G1 F600
G1  X55 Y60 Z55
G4 P0 
M03 S1000
G4 P0
G1 F400.000000
G1  X55 Y10 Z55
G4 P0 
M05 S0

G1 F600
G1  X60 Y60 Z60
G4 P0 
M03 S1000
G4 P0
G1 F400.000000
G1  X60 Y10 Z60
G4 P0 
M05 S0

G1 F600
G1  X65 Y60 Z65
G4 P0 
M03 S1000
G4 P0
G1 F400.000000
G1  X65 Y10 Z65
G4 P0 
M05 S0

G1 F600
G1  X70 Y60 Z70
G4 P0 
M03 S1000
G4 P0
G1 F400.000000
G1  X70 Y10 Z70
G4 P0 
M05 S0

G1 F600
G1  X75 Y60 Z75
G4 P0 
M03 S1000
G4 P0
G1 F400.000000
G1  X75 Y10 Z75
G4 P0 
M05 S0

G1 F600
G1  X80 Y60 Z80
G4 P0 
M03 S1000
G4 P0
G1 F400.000000
G1  X80 Y10 Z80
G4 P0 
M05 S0

G1 F600
G1  X85 Y60 Z85
G4 P0 
M03 S1000
G4 P0
G1 F400.000000
G1  X85 Y10 Z85
G4 P0 
M05 S0

G1 F600
G1  X90 Y60 Z90
G4 P0 
M03 S1000
G4 P0
G1 F400.000000
G1  X90 Y10 Z90
G4 P0 
M05 S0

G1 F600
G1  X95 Y60 Z95
G4 P0 
M03 S1000
G4 P0
G1 F400.000000
G1  X95 Y10 Z95
G4 P0 
M05 S0

G1 F600
G1  X100 Y60 Z100
G4 P0 
M03 S1000
G4 P0
G1 F400.000000
G1  X100 Y10 Z100
G4 P0 
M05 S0

G1 F600
G1  X105 Y60 Z105
G4 P0 
M03 S1000
G4 P0
G1 F400.000000
G1  X105 Y10 Z105
G4 P0 
M05 S0

G1 F600
G1 X0 Y0
M30

人気の投稿