これまでのあらすじ:
2016年3月、フェルト生地を手で裁断している際にレーザーカッターがあれば複雑なカットが容易にできるなあと思って、安価になってきたレーザーカッターを購入しようと思ったのがきっかけ。調べていくうちに、合板も切れたほうがいいと思うようになって、CNCルーター(CNCミリング)についても考えるようになった。
Arduinoは以前から使っており、CNCシールドがあると気付いて自作も可能と思うようになった。当初はShapeOkoやX-CARVEを参考にMakerSlide、OpenRail、V-Wheel、2GTタイミングベルトなどで5万円くらいで自作しようと思っていた。AliExpressでも部品が安く買えることが分かって、しばらくは部品探し。探せば探すほど安くて本格的な部品も見つかってくるので、そんなにケチらなくてもいいのではないかと徐々にスペックアップ。最終的には剛性や精度のことも考えてボールスクリューやリニアスライドを使うことになり、予想以上に重厚な3軸CNCマシンをつくることに(約7万円)。
構想から約5週間(制作約3週間)でルーターとレーザーともに使えるようになり、現在はgrbl1.1+Arduino CNCシールドV3.5+bCNCを使用中(Macで)。余っていたBluetoothモジュールをつけてワイヤレス化。bCNCのPendant機能でスマホやタブレット上のブラウザからもワイヤレス操作可能。
その他、電子工作・プログラミング、最近は機械学習などもやっています。基本、Macを使っていますが、機械学習ではUbuntuを使っています。


CNCマシン全般について:
国内レーザー加工機と中国製レーザー加工機の比較
中国製レーザーダイオードについて
CNCミリングマシンとCNCルーターマシンいろいろ
その他:
利用例や付加機能など:
CNCルーター関係:

*CNCマシンの制作記録は2016/04/10〜の投稿に書いてあります。

2017年10月9日月曜日

Convolutional Neural Networksのコース

Deep Learningのなかでも、特にGANなどの画像生成の技術に興味があるのですが、その一歩手前としてConvolutional Neural Networks(CNN)も勉強してみようかと、いろいろ探していました。CourseraのDeep Learningのコース4であるConvolutional Neural Networksはまだ開講していないため、もうしばらく待たないといけません(以下)。

Courseraと同様に、UdacityのDeep Learningコースもまだwaiting listのようです(かなり人気あるのかも)。
ほかにも、fast.aiでも無料でCNNの授業はあるようです。一見よさそうなのですが、AWS(有料)を使うようで登録やセッティングがめんどくさそうです。


あとは、前から気になっていたUdemyのDeep Learning: GANs and Variational Autoencodersと同じシリーズのDeep Learning: Convolutional Neural Networks in Pythonというコースです。

GANのコースはあまりないので(fast.aiにはある)、この↑のGANのコースをいずれは受講したいと思っているので、割引価格で1200円(書籍を買うよりも安い)だし、試しにどんなものかということも含めてCNNコースを受講してみることにしました。

Udemy: Deep Learning: Convolutional Neural Networks in Python
このコースでは、TheanoTensorflowの二種類異なる方法でコーディングするようです。Theanoは使ったことはないですがそれぞれメリット/デメリットがあるようで、この他のライブラリも含めどれがいいのかはほとんど好みという感じかもしれません。ただし、Theanoは次の1.0(現在0.9.0)をもって開発終了らしいです(原文)。


このコースの特長としては、試験や課題というものはありません。当然期限もありません。専用の質疑応答のフォーラムはあるので、有料の動画コンテンツ(英語)と質問応答の権利を購入するという感じです。授業で使うサンプルコードに関しては、このコースを受講していなくてもgithubからすぐに手に入ります。
授業内のアルゴリズムや数学的な説明は非常に端的で分かりやすいと思います。数分〜10分程度の動画が合計4時間分あります。ただ動画を眺めているだけではだめで、ノートをこまめにとるとか、コピペなど使わないでコードを書き、実際手を動かすことを強く勧めてきます。たしかにプログラミングの場合はそうしたほうが覚えが早くなります。
数学に関しては、他のコースでも言っていましたが、それほど深く理解しようとする必要はなくて、ライブラリの関数をどう使うのかということに慣れたほうがいいようです。このコースは理論の理解というよりも、コーディングに重点をおいているという感じです。しかし、いきなり本題に入るまえに、簡単なサンプルコードを試したり、いくつかの段階を経て、最後にはまとまったコードを書くということになります。このCNNのコースは上級者向けのようで、基本的なPythonプログラミング、機械学習の基礎は学んでおかなければいけません。たしかに、少し敷居が高そうです。このコース以外にも段階やジャンルに応じていくつかコースがあるので、内容に追いつけない場合は他のコースも同時にやったほうがいいのかもしれませんが、それだけお金がかかってしまいます。

最初のほうのCNNの説明は以下ようなステップになっています。

初心者にとっては、どのような手順で理解していけばいいのか分かりにくいので、このような段階的な説明があると理解しやすくなります。
Convolutionに関しては、まずはフィルターという概念で、Hello worldをしゃべる音源にエコーフィルターを加えるアルゴリズムを書いて実験するところから始まります。次に画像にぼかしフィルターを加えたサンプルで実験します。このへんは最初のエクササイズという感じです。このエクササイズを通して、変換された元データからConvolutionということを感覚的につかんでいきます。その後はこのフィルタリングされた画像をニューラルネットワークに入力して、CNNへと発展させていく感じです。
コーディングはTheanoとTensorflowの2種類用意してあり、もし普段からTensorflowを使っているのであれば、Theanoのコードは使わなくもいいと思います。
できるだけコピペしないで一通り書いてみました。コーディングすると、一行ずつ何をしているのかが分かるので、その分理解も深まります。Theanoのほうでもコーディングしてみると、二つの方法で書くので、さらに理解が深まる感じです。
CNNの大体のパターンはわかったのですが、まだ自力でコーディングはできないので、もう少し繰り返す必要がありそうです。もう少し慣れてくれば、コースに頼らなくても自力で他のサイトなど見ながら勉強していけそうです。

あとで気づいたのですが、CNNは上級者向けで、最も興味あるGANのコースは中級者向けなので、こちらのコースのほうを先にやってみてもよさそうです。

0 件のコメント:

コメントを投稿

人気の投稿